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Abstract: 

Scan&Solve™ software for engineering analysis from Intact Solutions is based on a patented meshfree 
technology that liberates Finite Element Analysis (FEA) from the dependence on and limitations of 
meshing.  The salient feature of the technology is separate handling and controls of geometric and 
physical computational models that are seamlessly combined at solution run time.   The advantages of 
this approach include unprecedented flexibility in handling geometric errors, small features, complex 
boundary conditions, and interfaces, while maintaining most of the benefits of classical finite element 
analysis.  Scan&Solve™ can be applied to any geometric model and used within any geometric modeling 
system that supports two fundamental queries:  point membership testing and distance to boundary 
computation.  This white paper describes the technical background behind the Scan&Solve™ 
technology, summarizes its implementation, and demonstrates it advantages.   
 

1. Introduction 
 

The tyranny of meshing 
 
Over the last fifty years, Finite Element Analysis (FEA) has become the predominant tool in engineering 
analysis, offered by virtually all Computer Aided Engineering (CAE) vendors and used in a majority of 
analysis and simulation applications.  Yet, the acceptance and adoption of CAE tools has been slow, and 
the exceedingly popular and widely accepted predictions of rapidly accelerated growth in the CAE arena 
do not appear to have materialized.1

                                                           
1 The origins of both Computer Aided Design (CAD) and Computer Aided Engineering (CAE) software can be traced 
to 1950’s and 1960’s when theoretical foundations of both disciplines were developed in anticipation of then 
revolutionary computer technology. Fifty years later, Product Life Cycle Management (PLM) is a rapidly growing 
$15-20 billion global market, of which CAE software and services represent only 10%. CAD related activities 
account for much of the rest. 

  Why CAE tools have consistently been lagging the technological 
advances in CAD is a complex and multi-faceted issue, but it is clear that CAE tools are still difficult to 
apply to geometric models in many realistic situations.  By all accounts, the main culprit is not the FEA 
method itself, but the process of preparing geometric data in a form acceptable for FEA.  Specifically, all 
commercial FEA codes require that the geometric model be converted into a conforming mesh of 
elements via an expensive and heuristic procedure known as meshing.  The resulting mesh is not 
intrinsic to the original geometric model, introduces additional errors, is expensive to compute, and 
affects the quality (or lack of it) in the FEA solutions.    
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By definition, meshes must adapt to the smallest geometric detail in geometric model,  leading to 
excessively large meshes, and making accurate meshing impractical for any geometric model with small 
features or geometric errors.  This applies, for example, to all models shown in Figure 1 either due to 
presence of small features or because of small geometric errors in the geometric model. 
 

 
(a) 

  
(b) 

 
(c) 

Figure 1:  Accurate meshing is difficult or impossible for: (a) piston with small features, (b) pedal with 
geometric errors, and (c) David with noisy triangulated surface. 

The adopted industry-wide solution is to simplify the geometric model   (for example, by smoothing or 
by removing blends and fillets), to defeature it (for example, by eliminating small holes and protrusions), 
and to heal and repair it (for example, gaps, self-intersection errors, tiny edges and surfaces, etc.).   
Unfortunately, these additional heuristic steps are only partially automated, and break the integration 
between geometric design and engineering analysis that now operate on two distinct loosely related 
geometric models.  For example, the FEA solution for a solid in Figure 2 relies on a mesh that 
significantly distorted the original geometry and removed potentially important geometric details. 
 

 
Figure 2: The Finite Element solution (left) relies on a mesh that significantly simplifies and distorts the 

geometry of the solid (piston) on the right.  Two of many such distortions are indicated above. 
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Many man-years and millions of dollars have been and continue to be invested into improving finite 
element meshing technologies.   But it is important to recognize that the above limitations are intrinsic 
to all mesh-based approaches, and cannot be resolved by incremental improvements in meshing 
technologies.  These very same limitations prevent wider adoption of finite element analysis in many 
scientific, engineering and consumer applications, ranging from engineering to art and medicine – not 
because finite element analysis is difficult, but because the tedious and error prone process of data 
preparation and meshing make it impractical. 
 

Scan&Solve™ :  engineering analysis in situ 
 

Scan&Solve™ was developed specifically to liberate FEA from the tyranny of meshing, while preserving 
most of the advantages of this classical and widely accepted method of engineering analysis.  The basic 
idea is simple:  create separate geometric and physical representations of the model in question and 
combine them only when necessary, without requiring expensive and error-prone data conversions or 
always using the most authentic representation available.   The concept is illustrated in Figure 3. 
 
 

 

 

 

 

 
Figure 3:   Scan&Solve™: a geometric model  is immersed into a 3D grid of space;  the basis functions of 
the grid are modified by the solid and the boundary conditions at run time to solve the  field problem.  

 
The analysis model is constructed on a (typically, but not necessarily) uniform orthogonal grid of space 
that initially knows nothing about the model being analyzed.  It can be thought of as a 3D “graph paper”.  
The usual (variety of) basis functions2

 

 are associated with the vertices of this mesh.  The geometric 
model exists in the same space, in its native unaltered form, and is not aware of the mesh surrounding 
it.  The geometric model can come from any source, as long as it is clear which points in space belong to 
the model and which do not, and it is possible to compute the distance from any given point to the 
model’s boundary.   

To perform analysis on a geometric model, such as structural analysis, one must specify boundary 
conditions such as restraints and loads on the boundary of the native geometric model.   The analysis 
problem will then be solved on the uniform orthogonal mesh, but the usual FEA procedure is modified 
at run time to account for the existence of the geometric boundaries, restraints, and loads via the 
Scan&Solve™ process.  Section 4.2 shows and discusses Scan&Solve™ solutions for native geometric 
models in Figure 1. 
 

                                                           
2 Basis functions are often called “shape functions” in FEA terminology.   
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The theoretical foundations of the Scan&Solve™ process are explained in Section 2, and implementation 
details are broadly outlined in Section 3.  Experimental results and comparison with known solutions is 
described in Section 4.  We conclude this section by a brief comparison of the Scan&Solve™ and the 
classical mesh-based FEA, shown in the Table below.  
 
 

Mesh-based FEA Scan&Solve™ 
Geometry approximated by the mesh Native geometry is used 
Preprocessing:  heuristic simplification & meshing Preprocessing:  none 
Meshing must resolve all geometric errors and 
tolerances 

Geometric errors are irrelevant as long as points 
can be classified and distances to the boundary 
can be computed 

Mesh size is determined by the smallest feature 
size 

Mesh size is determined by the desired resolution 
of the analysis model (uniform grid) 

Small features must be removed  Small features are preserved and handled 
automatically  

Boundary conditions:  enforced at the nodes only Boundary conditions:  enforced on all points of the 
boundary  

Derivatives:  pre-computed Derivatives:  pre-computed & run time  
Integration:  Gauss points of finite elements Integration:  Gauss points determined at run  time 
Basis functions:  local support  Basis functions:  local support  
Sparse linear system Sparse linear system 
Geometric accuracy control: fixed and limited by 
the mesh 

Geometric accuracy control:  determined by 
accuracy of geometric computations (point test, 
distance); adaptive. 

Analysis accuracy control:  h-, p-, and k-refinement Analysis accuracy control:  h-, p-, and k-refinement 
 

Table 1:  Comparison of mesh-based FEA and Scan&Solve™ technology. 
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Figure 4:  The Kantorovich Method 

2.  How  Scan&Solve™  works  

General theory and historical background 
 
Scan&Solve™ is rooted in a classical numerical 
technique developed in the 1950’s by a well 
known mathematician, Leonid Kantorovich.3

 

 
The technique was described in [5] and has 
become known as the Kantorovich method.  
The key idea of the method is summarized in 
Figure 4 and amounts to representing the 
solution of the analysis problem as a product of 
two functions:  one known function ω implicitly 
represents the boundaries of the shape where 
the field function is zero, and a second 
unknown piecewise function Φ which captures 
the analytic behavior of the field throughout 
the domain.  Originally,  the latter function was 
represented in a global polynomial basis, but 
can be also constructed using many other well 
known basis functions, such as B-splines, radial 
basis functions, or finite element shape 
functions among others.  In the context of 
structural analysis, the solution field function u 
is displacement, and the zero boundary 
conditions correspond to the boundaries that 
are rigidly fixed.  From a computational point of 
view, the intrinsic advantage of the method lies 
in the clean and modular separation of the 
geometric information represented by the 
function ω from the differential equation and 
numerical procedure used to determine the 
analytic component Φ.  

Over the years, the Kantorovich method has 
been rediscovered by others many times and 
extended in various ways.  Most recently,   
Generalized Finite Element Analysis (GFEM) and 
Extended Finite Element Method (EFEM) [2] 
propose different methods for supplementing 
the usual shape functions using various 
enhancement functions, ω, in order to alleviate 
meshing problems or to capture asymptotically 
known behaviors (for example, in the vicinity of 
cracks, interfaces, or stress concentrations). A 
Ukrainian academician, V.L. Rvachev, recognized 

                                                           
3 Kantorovich was also awarded the Nobel Prize in Economics in 1975.  
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Figure 5: String in tension.  Problem 
formulation.  
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Kantorovich’s representation of the field as a special form of the Taylor series expansion by the powers 
of the function ω and showed that the notion of the solution structure generalizes to any and all types 
of engineering analysis [7, 8, 9].  He also developed a theory of R-functions specifically as a method for 
constructing these functions, ω, for arbitrary shapes [7, 10, 11].  Unfortunately, the constructions based 
on R-functions require solving a number of difficult algorithmic problems for realistic 3D solids and do 
not appear to scale well with increase in geometric complexity.    
 
The Scan&Solve™ technology fulfills the promise of the sound theoretical foundations laid by 
Kantorovich, Rvachev, and others, achieving full automation, generality, and scalability for realistic finite 
element analysis problems.  The key principle behind Scan&Solve™ is the identification of the somewhat 
mysterious function ω with the more familiar concept of the Euclidean distance function.   As we will 
explain below, this association allows transformation of all finite element based solutions into a 
straightforward and efficient computational pipeline that can be used within any CAD/CAE system.  
Before we explain how this pipeline is built in Section 4, it is instructive to compare the classical FEM and 
Scan&Solve™ using a simple 1-D example.  

FEM vs. Scan&Solve™:   One dimensional example 
For illustration purposes, consider a common one-dimensional example shown in Figure 5.   A string is 
subject to an axial tension λ, fixed at the two end points x=a and x=b, and is loaded by the vertical 
distributed force q.  The problem is to determine the shape of the string by solving for the vertical 
displacement u(x). 

The classical Galerkin (weighted residual) formulation of 
the Finite Element Method is detailed in Figure 6 and is 
illustrated graphically in Figure 7.   In this very simple 1D 
example, the finite element mesh is simply a subdivision of 
the line segment ab into smaller line segments.  Linear 
basis functions are associated with the nodes in that 
subdivision, yielding the “saw tooth” pattern.   The first and 
the last nodes must coincide with the end points a and b, 
respectively, so that the displacements u1 and u2 may be 
enforced at these locations.  Equation (I.5) in Figure 6 
represents a system of linear equations, where the left 
hand side is a matrix of stiffness coefficients and the right 
hand side amounts to integration of known quantities:  
distributed force q and imposed boundary conditions.  The basis functions have compact support (which 
means that they overlap only with their neighbors), implying that the stiffness coefficients can be 
computed locally and efficiently, and the resulting stiffness matrix is sparse and banded.   
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Figure 6:  FEM solution of the 1D string problem 

Figure 7:  Finite element 
solution of the 1D string in 
tension problem. 

 

 

 
Solution of the same problem using the Scan&Solve™ method is shown in Figures 8 and 9.    Instead of 
meshing the domain (line segment ab), a uniform grid is associated with the x-axis, and a basis function 
is associated with each grid point.  Notice that in this case the basis functions are the same as in the FEM 
formulation,  but the nodes of the mesh no longer coincide with the boundary points a and b;  in other 
words, the grid and these initial basis functions do not know where the boundary of the domain is.     
Following the Kantorovich method, the new basis functions are created as the product of the function ω 
and the FEM basis functions (Figure 9).  These functions take on zero values at the end points a and b.  
Using the distances to a and b, we construct a single function, u*, that interpolates the prescribed values 
u1 and u2 at the end points a and b respectively [8].   When we add u* to the linear combination of the 
newly constructed basis functions, we obtain a representation for displacement that satisfies the fixed 
boundary conditions at the end points of the string,  even though the grid points do not coincide with a 
or b!   We now repeat the usual weighted residual formulation, ending in Equation (II.6) which is 
structurally very similar to the FEM equation (I.5) in Figure 6.  One significant difference between the 
two equations is the last term  because Scan&Solve™ enforces the boundary conditions at every point 
on the boundary,  whether they coincide with the nodes of the mesh or not.  The other terms are 
essentially the same as in FEM, and the stiffness matrix is still sparse, but evaluation of the integrals is 
more complicated because the domain (line segment) is not meshed and the integrands include the 
distance functions.     
 

1u 2u
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Figure 8:  Scan&Solve™ solution of the 1D string problem. 

Figure 9:  Scan&Solve™ 
solution of the 1D string in 
tension problem 
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3D Linear Structural Analysis with Scan&Solve™ 

The preceding 1D example highlights the essential similarities and differences between FEM and 
Scan&Solve™.  Of course, meshing a line segment is trivial, and the added complexity of Scan&Solve™ 
may appear to defeat the purpose.  However, the Scan&Solve™ approach applies to any and all 
problems in engineering analysis and in any number of dimensions.  The formulation of linear elastic 
structural analysis is summarized in Figure 10 and illustrated with a simple example in Figure 11.  

 

Figure 10:  Scan&Solve™ formulation for linear elastic structural analysis. 
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The full 3D problem of static elasticity is a straightforward generalization of the 1D string in tension 
problem, except all relevant quantities  (displacements, forces, basis functions, and coefficients) are now 
vector valued (with components in each of the three coordinates x, y, z).  Thus, the one dimensional 
string in Figure 5 becomes a three-dimensional solid Ω with a two-dimensional boundary Γ, part of which 
is fixed and part of which is loaded by external forces (Figure 11(a)).  The tension λ is generalized to the 
stress-strain matrix D, and partial differentiation of the basis function is replaced by application of the 
strain-displacement matrix B commonly used in FEA literature.  The solid is not meshed, but it is 
immersed into pre-meshed space, as shown in Figure 11(b).  In this case, the mesh is uniform but it does 
not have to be.  A basis function, χi, commonly a three-dimensional B-spline, is associated with every 
node of the mesh. Using distances to the fixed portions of the boundaries, a global function u* is 
constructed to interpolate all prescribed displacements as shown in Figure 11(c).  The interpolation 
procedure is a straightforward generalization of expression (II.3) used to interpolate the displacements 
indicated at the ends of the string in tension [8]. 

The resulting system of linear equations (III.3) represents a force-balance equation for a 3D solid and is 
structurally very similar to the system (II.6) for a string in tension.  In fact, there is a one-to-one 
correspondence between the integral terms, except for the last integral in (III.3) which represents the 
loads due to traction forces applied over the boundary of the solid.   The corresponding term is missing 
in the equations (II.6) for the string, only because no boundary forces were indicated in the string 
problem formulation.  Solving the resulting system of linear equations for the unknown coefficients Ci 

and substituting the computed values of the coefficients into expression (III.2) immediately solves the 
displacement problem as shown in Figure 11(d).  The stresses (Figure 11(e)) are recovered from 
displacement through application of the usual relationship σ=DB[u] in any FEA procedure.  

It should now be clear that Scan&Solve™ belongs to the same (variational) class of numerical solutions 
as classical FEA, but it eliminates the need for meshing the domain, Ω, in favor of additional 
computations performed on the native geometric representation.  These computations are used to 
assemble and solve the system of equations (III.3) and are at the very heart of the Scan&Solve™ 
technology.   The next section will discuss them in more detail.    
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(a) Solid and boundary conditions.  The red faces 
are fixed in all directions, while a uniform 
pressure is applied to the blue face.   

 

(b) Solid immersed into a uniform grid of splines, 
shown here at a low resolution for clarity.   

 

(c) Displacement function u* interpolates 
(transfinitely) the boundary conditions. This 
function is zero at all points where the faces 
are  fixed.   

 

(d) Computed displacement, shown magnified 5x. 

 

(e) Computed stresses. 

 

 

Figure 11: Scan&Solve™ example of linear 
structural analysis.    
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3. System design and operation 
 

As can be seen from its formulation and equation (III.3), mathematically Scan&Solve™ is very similar to 
other FEA approaches, but its implementation differs substantially from most FEM codes because it 
places minimal requirements on the geometric model and the user.  At no time is the model required to 
be meshed or converted into another representation, and at no time is the user constrained by the 
mesh or required to interact with it.  The power and flexibility of Scan&Solve™ is achieved through a 
number of modern computational techniques developed by Intact Solutions over the last decade.   The 
high level schematic description of the Scan&Solve™ is shown in Figure 12. 

 

 
Figure 12.  Schematic architecture of the Scan&Solve™ system 

 
 
The inputs to the system are identical to those expected in any engineering analysis system.  They must 
include some unambiguous geometric representation of the domain (solid) and its boundary.  Portions 
of the boundary Γu are fixed or restrained by applied displacements, and external loads are applied to 
other portions of the boundary Γt.  Gravity or other accelerations may or may not be assumed to act on 
the solid as a body force.  The Scan&Solve™ system does the rest, including fully automatic generation 
of the linear system of equations, solving for the displacements, and computing stresses inside the solid 
and its boundary.  The sequence of computations is roughly as follows. 
 
A space grid of basis functions χi  (usually uniform B-splines) is automatically created by the system.  The 
user can (but does not have to) indicate the resolution of the grid, its non-uniformity, or choose a 
different type of basis functions.   Initially these basis functions are not aware of the solid’s boundaries.  
Next the system computes a collection of approximate distance fields, referred to as ωi, using a 
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proprietary technique to rapidly evaluate Euclidean distance to the portions of the domain boundary 
that are restrained.  Since distance is a property intrinsic to geometry, this can be done without 
conversion to other representations, or approximation by a finite element mesh.  The computed 
distance fields are used to modify the initial set of basis functions to  produce a new collection of basis 
functions ηi that now enforce fixed displacement conditions at the indicated boundaries.  When non-
zero displacements are indicated, they are interpolated into a single function u*, again using the 
constructed distances [8].  
 
At this point, Scan&Solve™ has all the information it needs to complete the solution process. The 
coefficients of the basis functions ηi will serve as degrees of freedom that are determined by solving a 
linear system of algebraic equations assembled by the Scan&Solve™ process.   The assembly process 
requires repeated numerical evaluation of the four integrals in equation (III.3) that are easily identifiable 
in the schematic diagram of Figure 12.  Two types of integrals must be computed:  volume integrals over 
the interior of the geometric model and surface integrals over portions of the boundary where loads are 
applied.  Numerical integration is a simple matter of summing weighted samples of a function taken at 
specified quadrature (integration) points.  Unlike finite element analysis, these quadrature points must 
be allocated at run time since the geometric domain does not conform to the spatial grid of the basis 
functions.  Both types of integration allocate these quadrature points using operations provided by all 
mainstream CAD systems.  To accommodate volume integration, the geometric representation needs 
only answer whether a point supplied by the integration algorithm is inside or outside the domain [6].  
This operation is known as point membership classification or PMC, and is fundamental to all geometric 
modeling CAD systems.  Surface integration requires only polygonization of that portion of the boundary 
where the loads are applied.  Surface polygonization is also a key component of CAD systems that 
provide a visual display or output for rapid prototyping. 
 
The result from the integration processes is a system of linear equations: a sparse matrix A whose 
elements are the usual stiffness coefficients and a vector L containing the contributions of the loads and 
restraints.  This system of linear equations is solved using standard linear solver tools to yield the 
coefficients Ci of the basis functions ηi in the solution represented in the form of equation (III.2).  
Substitution of these coefficients allows the solution to be evaluated and differentiated [12] at any point 
to determine physical quantities of interest (e.g. displacement, strain, stress) at any point from the 
domain.   The solution may also be sampled and visualized on the surface of the solid using standard 
post-processing techniques, including surface polygonization and graphics hardware.    
 
To summarize, Scan&Solve™ preserves most computational advantages of FEA, but avoids any meshing 
by reducing all computations to a well-defined sequence of simple and efficient computations:  point 
and function sampling, distance to boundary computation, and solution of sparse system of linear 
equations.  
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4. Experimental results 
In this section we validate the Scan&Solve™ approach by a few carefully selected numerical experiments 
and demonstrate its power on several non-trivial real world example.  

Comparison with known analytic and experimental solutions 
 

Only a few very simple problems in linear elasticity admit exact analytic solutions, and only a few 
experimental solutions have been obtained over the years.  We will rely on three such known solutions 
to provide experimental evidence for correctness and consistency of the results computed by 
Scan&Solve™.    

Experiment 1:  linear displacements and constant stresses 

In a simple experiment, we use Scan&Solve™ to simulate the basic tensile stress test.  The purpose of 
this experiment is to validate that linear displacements and constant stresses can be accurately 
computed by Scan&SolveTM.  One can think of this experiment as an equivalent of a `patch test’ used in 
validating mesh-based FEA solutions.  The setup of this numerical experiment is shown in Figure 13.  
Plots in Figure 14 show the computed distributions of the components of the displacement vector and 
von Mises stress obtained by Scan&SolveTM, confirming that the components of the displacement vector 
u, v and w are linear functions of the corresponding coordinates, and that the value of von Mises stress 
is constant in every cross section of the rod.  Figure 15(a) shows the dependence of the computed 
solutions on the size ∆ of the support of the basis function, indicating that the solution converged, and 
that the value of the von Mises stress predicted by Scan&SolveTM is in very good agreement (the relative 
error ε is less than 0.01%) with the theoretical value of the tensile stress (Figure 15(b)).    

 



Scan&Solve™  Intact Solutions, LLC 

15 
 

 

Figure 13:   Experiment 1:  simulating the tensile test.  

Figure 14:  Linear displacements and constant 
stresses.  Plots in (a,b,c) show  that the components 
u, v and w of the displacement vector are linear 
functions of the corresponding coordinates;  (d) von 
Mises stress is constant in every cross section of the 
rod. 

 

  

(a) Convergence of the maximum values of the    
components of the displacement vector;    

(b) Dependence of the relative error ε of von Mises stress 
with respect to the element size Δ. 

 

Figure 15:   Experiment 1:  Convergence studies. 
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Experiment 2:  comparison with analytic solution.  

The second numerical experiment compares the Scan&SolveTM solution with the known analytic solution 
for a loaded infinite 2D plate shown in Figure 16(a).    A close 3D finite approximation  of this problem 
was created in Scan&Solve™ system using thin but finite 3D plate   (2m x 2m, 0.02m thick),  and by 
applying loading conditions to the finite boundaries of the plate that match exactly to the known 
analytical solution.  We then solve for displacements and stresses inside the thin solid and compare 
results to the analytic solution.  Plots in Figure 17 demonstrate exponential convergence of the 
displacement and von Mises stress obtained by Scan&SolveTM as the element size Δ decreases.  
Figure 17 also illustrates that Scan&SolveTM solutions are in a good agreement with analytic results:  
error of the displacement does not exceed 0.1% and von Mises stress is within 1% of the analytically 
predicted value. 

 

 

 

(a) Loaded infinite plate. (b) Setup of a numerical experiment for a finite 3D 
plate that simulates the problem in (a). 

Figure 16:  Experiment 2:  Simulating analytic solution. 

 

 

∞σ
R=0.1 m

330
GPa9568

m020
Pa2500

.ν
.E

.h

=
=
=
=∞σ

1 m

1 
m

R=0.1 m

Analytic
solution



Scan&Solve™  Intact Solutions, LLC 

17 
 

 

 

 

Figure 17:  Scan&Solve™ solution vs. analytic 
solution for Experiment 2:  exponential  
convergence of the displacement and von Mises 
stress is demonstrated using L2 norm and relative 
error ε. 

 

Figure 18: Experiment 3:  Stress concentration 
factor for rectangular plate with central hole. 
[Adapted from J.A.Collins, Failure of Materials in 
Mechanical Design,1981.] 

 

Experiment 3: Comparison with empirical data. 

The final numerical experiment compares the stress concentration factor computed by Scan&SolveTM 
with the widely accepted and empirically determined value (Figure 18).  Geometry of the plate and 
loading conditions are shown in Figure 19.  The empirical data predicts the stress concentration factor of 
2.5, which is defined as the ratio of the max stress at the boundary of the hole to the average stress over 
the end of the plate (see [4] for more details).  Figures 20 and 21 show the results computed by 
Scan&SolveTM.  Figure 20 indicates that the maximum values of the components of the displacement 
field converged and do no change as the element size decreases.  As expected, the plots in Figures 21(a) 
and (b) also demonstrate good agreement between empirical data and the stress concentration factor 
computed by Scan&SolveTM.  The relative error in the stress concentration factor is less than 1%. 
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Figure 19: Geometry of the plate and loading conditions for Experiment 3. 

 

 

Figure 20: Experiment 3: convergence of the maximum values of the displacement components as the 
element size ∆ decreases. 
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(a) Stress concentration factors reported by 
Scan&SolveTM are in good agreement with the 
experimental data in Figure 18. 

(b) Relative error of stress concentration factors is 
less than 1%. 

Figure 21:  Experiment 3:  Comparison with empirical data.    

 

4.2 Real world examples 
 

Scan&Solve™ is rooted in sound mathematical foundations, and the above experiments confirm that it 
performs as expected, computing correct answers in carefully controlled experiments.  These 
experiments do little to demonstrate the claimed advantages of Scan&Solve, particularly when it comes 
to handling complex real-world geometry.  We conclude this section with three examples (introduced in 
Figure 1) chosen to highlight the power, flexibility, robustness of the technology.   

Example 1:   Native CAD model; no defeaturing or simplification 

Figure 22(a) shows a solid model of a piston, with indicated boundary conditions, and Figure 22(b) 
shows the displacement field computed by Scan&Solve™.  Despite the large number of small features in 
this model (holes, blends, fillets), Scan&Solve™ can use any desired resolution for stress analysis.  In this 
case, with 60,000 basis functions, the solution is computed in 3 minutes 10 seconds on a midrange 
Pentium class computer.   The solution procedure is fully automatic, no geometric features have been 
removed or simplified, and no preprocessing is required to change the resolution of stress analysis. 
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(a) 

  

(b) 

Figure 22: Scan&Solve™ solution for a complex piston geometry.  (a) The boundary conditions.  The red 
faces are fixed, while the blue face has a pressure applied.  (b) The computed von Mises stress 
distribution over the piston with the deflection magnified 60x.     

 

Example 2:  Imported CAD model; no need for healing and repairs 

Figure 23(a) shows another example.  In this case, the solid model of an automotive pedal is subjected 
to loads as shown.  Because the CAD model was translated between CAD systems, the routine quality 
check of the geometric model reveals a large number (more than a hundred) of small errors and 
inconsistencies in the pedal’s boundary representation, including tiny edges and surfaces, overlapping 
and intersecting faces, mismatching tangents, and so on. These errors, highlighted in Figure 23(b), are 
likely to cause problems in most mesh-based FEM systems, but not in Scan&Solve, because it relies only 
on the relatively simple, robust and stable geometric computations that are supported in most CAD 
systems even in the presence of the small errors.  If a model is good enough for point membership and 
distance computations, then it is also good enough for Scan&Solve™.  Figure 23(c) shows the 
displacement solution for the model in Figure 23(a).  With 58,000 basis functions, the total computation 
time is less than 6 minutes. 
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(a) 

 

(b) 

 

(c) 

Figure 23: Scan&Solve stress analysis of automotive pedal.  (a) The boundary conditions.  The red faces 
are fixed, and a 600N load is distributed over the blue faces.  (b) The geometric errors and 
inconsistencies that prevent meshing.  (c) The computed von Mises stress within the pedal. 

 

Example 3:  Native geometry, any representation, any resolution 

 Our final example was recently profiled by the National Science Foundation and in many widely 
circulated publications [13, 14].    Figure 24 (a) shows the first principal stress for the statue of the 
Michelangelo’s David under gravity, computed using Scan&Solve™.  The results confirmed that high 
stresses in the area shown arose when David’s orientation was 3° off vertical.  Furthermore, these 
results correlate well with both earlier computed FEM solutions and experimentally observed cracks 
(Figure 24 (b)).   In this case, Scan&Solve™ computed the displacements and stresses directly from the 
triangulated model provided by the Digital Michelangelo Project at Stanford University.  Minimal 
automated preprocessing was needed to create a valid model supporting point and distance queries.   
No simplification, smoothing, or meshing was required.  It may be instructive to compare the computed 
solution with the previously published solution using FEM based on manually smoothed and simplified 
model (Figure 24 (c)) 
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(a) Von Mises stress distribution computed using Scan&Solve™. 

 

(b) Location of cracks in existing statue [15].   

 

(c) First principal stress distribution 
computed using FEA [15]. 

Figure 24: Stress analysis on Michelangelo’s David. 

 

5. Conclusions  
 

“It is unworthy of excellent men to lose hours, like slaves, in labors of calculation which  
could be safely relegated to anyone else if machines were used. “ 
       Gottfried Wilhelm Leibnitz 

   
Finite Element Analysis revolutionized engineering by enabling analysis and simulation to be performed 
by analysts for simple and complex problems that could not be solved by hand, and at speeds that are 
not possible without use of computers.  With Scan&Solve™ meshfree technology, finite element analysis 
enters a new era where the same powerful tools of analysis and simulation can be used by non-
specialists and specialists alike, without any preprocessing, with automation and speed that extend the 
reach of FEA throughout engineering and beyond, including art, medicine, military, and consumer 
applications.  The discussion in this paper was confined to linear stress analysis, but the concepts and 
methods of Scan&Solve™ apply to any and all analysis problems.  We conclude by briefly summarizing 
some of the more exciting applications of Scan&Solve™. 
 

Analysis in Situ 
Scan&Solve™ can be integrated with any CAD or geometric modeling system that supports the required 
queries:  point membership classification (PMC) and distance to boundary computation.  This means 
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that the models no longer need to be massaged, simplified, healed, and translated.   The engineering 
analysis can be performed directly on the native representation and within the familiar representational 
framework, whether this model is a boundary representation, STL file, volumetric representation, 
constructive solid geometry, or a polygonized model.   
 

Analysis fast  
Despite the perceived computational overhead, performance of Scan&Solve™ is already approaching 
that of commercial FEA systems, and is likely to exceed them on models containing small features, 
errors, and noisy boundaries.  However, the deterministic simplicity of the Scan&Solve™ computational 
pipeline virtually guarantees additional dramatic improvements via optimized algorithms, improved 
hardware, and the ongoing shift towards increasingly parallel and multithreaded computing (e.g. using 
GPU).   
 

Analysis on demand, anywhere 
Full automation of engineering analysis challenges the established economic assumptions and 
introduces the possibility of analysis and simulation in situations deemed impractical only a few years 
ago.   Geometric models and boundary conditions, as well as automatically computed solutions, may be 
easily transmitted over Internet suggesting that automated analysis over Internet is now a reality.   Any 
digital model that can be manufactured (by traditional methods or by 3D printing) may and should also 
be analyzed routinely for its physical performance. 
 

Analysis of scans, images and other acquired models 
A wealth of digital data has been acquired over the last several decades, but by all indications, digital 
content creation is still in its infancy.  Today most of this data is used for archiving, visual, or geometric 
planning purposes; physical analysis of such models is expensive and impractical on a large scale 
because it requires tedious, error-prone, manual data preparation.  But point membership queries and 
distance computations may be performed on all models, including those scanned, imaged, digitized, or 
sensed, enabling direct application of Scan&Solve™ analysis.  Whether the models are dental scans, CT 
scans of bones, 3D reconstructions from laser-scanned data or photogrammetry, or reverse engineered 
models – they can now be analyzed with Scan&Solve™ easily and economically.   
 

Seamless integration of design and analysis 
Integration of engineering design and analysis has remained an elusive goal, not in small part due to 
meshing and data model translations that introduce discrepancies between design and analysis models, 
thus breaking the design-analysis cycle.   With Scan&Solve™ seamless integration of design and analysis 
has become a reality.  The design and analysis models are always consistent, allowing repeated analysis 
of parametric and free-form changes in geometry, shape and topology optimization [3], as well as 
effortless (and even simultaneous) “what if” studies.  
 

Accuracy and errors 
Recall that with Scan&Solve™ geometric control of accuracy is separated from the analysis accuracy.  An 
important consequence of this separation is that one can perform rough/precise analysis on 
coarse/accurate geometric models, allowing for both conceptual studies and detailed analysis within the 
same computational framework.   In particular, analysis of geometrically imprecise models may lead to 
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more realistic results in engineering analysis, quantification of these results in terms of geometric errors 
and uncertainty, and application of engineering analysis to tolerance, sketched, and conceptual models.  
 
 

For more information on Scan&Solve™ technology and products, please contact us at 
 

 Intact Solutions, LLC 
www.meshfree.com 

info@intact-solutions.com 
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