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Abstract 

In practice in finite-element stress analysis, the engineer first needs to know if key stresses are converging, 
and second if they have converged to a reasonable level of accuracy.  Then these stresses can be reliably 
used in design.  The engineer further needs to know if, instead, key stresses are diverging because of 
singularities present.  Then these stresses can be of no direct use in design.  This paper describes some 
straightforward checks for assessing convergence or divergence of stresses from FEA. 

The performance of the convergence-divergence checks suggested here is evaluated analytically with a 
simple error model, and with series analogues.  These checks are also evaluated on an extensive set of 
diverging trial problems and converging test problems.  Some alternative checks put forward elsewhere are 
likewise evaluated. 

The evaluation of the suggested convergence-divergence checks shows that they can fairly consistently 
discern correctly whether stresses from FEA are converging or diverging.  In addition, if converging, the 
evaluation shows that these checks can reasonably accurately and typically conservatively gauge the degree 
to which stresses have actually converged.  In contrast, the evaluation shows that the alternative checks can 
conclude stresses are converging when, in fact, they are diverging.  Thus these alternative checks can be 
seriously misleading. 

Introduction 

Background and motivation 
Inherent in determining stresses with finite element analysis (FEA) is discretization error.  Only when 
discretization error is controlled is it possible to obtain sufficiently accurate stresses for comparison with 
strengths in designing for structural integrity.  Needed therefore are convergence checks to control 
discretization error. 

Comparably important for stresses from FEA is to know if, in actuality, they are diverging because of the 
presence of stress singularities.  Then stresses cannot be meaningfully compared with strengths in 
designing for structural integrity.  Needed therefore are divergence checks to ascertain when a stress 
singularity is present. 

One example of the importance of convergence-divergence checks in the FEA of stresses comes from the 
jet engine industry.  This example concerns the attachment of blades to disks in jet engines.  Shown in 
Figure 1 is a section of a blade base and a segment of a disk to which it is attached.  As a result of disk 
rotation, the blade wants to move vertically upwards (indicated by the arrow in Figure 1), and this tendency 
is restrained by contact with the disk (on CC' in Figure 1 after the gap closes).  The particular detail in 
Figure 1 reflects the teaching of U.S. Patent 5,141,401 (Reference 1), which claims that FEA shows the 
contact stresses between the blade and the disk (on CC') are reduced as a result of undercutting the disk by 
an angle φ (just above C).  In fact, with the undercut, local stresses σ  are infinite as in 
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where r is a dimensionless radial distance from the undercut vertex (Figure 1), and E, ν  are Young’s 
modulus, Poisson’s ratio (taken as common for the blade and the disk).  Stress singularities of this type are 
identified by Sneddon (Reference 2, Section 48.4):  Fields for the specific configuration of Figure 1 can 
readily be assembled using fields in Reference 3, on page 282.  Clearly, then, the stress-based reason put 
forward for the advantage of undercutting in Reference 1 is incorrect.  Given effective convergence-
divergence checks, such errors could and should be avoided. 

 

Figure 1.  Dovetail blade attachment with undercutting 

Unfortunately the foregoing example of a singular configuration in elastic stress analysis is far from a rare 
occurrence:  Reference 4 furnishes a recent review of the asymptotic identification of stress singularities in 
2D and 3D elasticity and underscores their abundant occurrence.  Furthermore, while recourse to the 
references in Reference 4 can aid in the detection of stress singularities, there remains the possibility that 
the configuration for FEA has a singularity that is yet to be identified asymptotically.  In general, then, 
effective convergence-divergence checks are essential for meaningful stresses from FEA. 

 

 Literature review 
The last dozen years or so has seen an extensive amount of research on convergence of FEA for answers in 
general, and for stresses in particular.  For the most part, this activity is well reflected in recent finite 
element texts:  Akin (Reference 5, 2005), Cook et al. (Reference 6, 2002), Reddy (Reference 7, 2006), and 
Zienkiewicz et al. (Reference 8, 2005).  All of these references discuss convergence of discretization error 
with mesh refinement.  Most of this discussion centers on rates of convergence:  Reference 6 provides an 
especially good discussion of this aspect of convergence.  There are some implicit convergence checks for 
test problems in these texts.  However, there are no explicit convergence checks for key stresses in 
applications in any of these texts.  Too, while References 6 and 8 do discuss convergence in the presence of 
a stress singularity, there are no explicit divergence checks in any of these texts.  These two omissions in 



 

these texts reflect the dearth in the literature at large of explicit convergence-divergence checks for finite 
element stress analysis of applications. 

Convergence checks in practice consist of two parts:  an assessment of whether the FEA is converging, 
then, if it is, an assessment of whether it has converged.  That is, is the FEA moving in the direction of the 
true key stresses sought with mesh refinement, then, if it is, has it got close enough?  The latter assessment 
requires an estimate of the ultimate error in the key stresses sought.  That is, a local a posteriori error 
estimate for the finest mesh used. 

All of References 5-8 give considerable attention to discretization error and furnish explicit a posteriori 
error measures.  These measures are global in nature (e.g., Zienkiewicz and Zhu, References 9,10).  Such 
error measures can be effective in guiding element size gradation within a mesh so that accurate 
calculations of peak local stresses result (e.g., as in Reference 11).  However, they cannot be used directly 
to estimate error in local stresses accurately.  On the one hand, this is because an FEA of a specific 
nonsingular configuration can have different local stresses converge at different effective rates, so no one 
global error measure can capture these distinct errors.  On the other hand, this is because an FEA of a 
specific singular configuration can have a local stress of interest diverge while a global error measure 
converges.  Needed for local stresses are local error measures. 

Of recent times, there has been more attention focused on local error measures rather than just global:  A 
fairly recent review is given in Ainsworth and Oden (Reference 12, Chapter 8).  In time, the results of this 
research can be expected to find their way into standard codes and assist stress analysts:  For the present, 
their implementation typically requires development of additional computer algorithims used in concert 
with standard algorithms.  Here, instead, we seek to provide simple local error measures that can be used 
with convergence tests using standard codes without any adjunct code. 

 Outline of remainder of paper 
We begin with some simple suggestions for deciding if local stresses of interest are converging with mesh 
refinement; that is, are h convergent where h is a measure of element size.  If judged converging, we offer a 
companion direct estimate of the extent to which local stresses have converged; that is, a local 
discretization-error estimate.  If judged not converging, we offer some singularity signatures to gauge if the 
lack of convergence is because of a stress singularity, or because the FEA simply has yet to converge 
sufficiently.  We also describe some alternative convergence checks that could take less computational 
effort to implement. 

As a preliminary evaluation of the suggested checks, we next examine their performance with a simplified 
discretization-error model.  This evaluation suggests some improvements with a view to being 
conservative. 

As a first 1D evaluation of the improved suggested checks, we examine their analogous performance when 
used in series summation.  As a second 2D evaluation, we examine performance on a series of singular trial 
problems and nonsingular test problems (some detailed results for these problems are appended).  These 
problems have analytically known singularities and known exact solutions, respectively.  Here, though, we 
treat them as if they were applications with unknown solutions in applying the improved convergence-
divergence checks.  Then we can draw on the known solutions to evaluate how well they actually work.  
We also submit the alternative checks to a like evaluation.  We close with remarks on both the improved 
suggested checks and the alternatives in light of the results found. 

Candidate convergence-divergence checks 
 

 Simple convergence checks 
In a test problem with a known exact solution, it is straightforward to assess convergence of an FEA.  With 
a first coarse mesh and a second refined mesh, direct comparison with the exact result for the stress of 
interest reveals whether the error is reducing with mesh refinement; that is, whether the FEA is converging.  
Then comparison of the result for this stress from the refined mesh reveals whether the error is sufficiently 
low; that is, whether the FEA has converged. 



 

In an application, however, the true answer for the stress of interest is sought but, of course, not known a 
priori.  Under these circumstances, checking for converging requires at least two successively-refined 
meshes for a total of three meshes:  a coarse (C), a medium (M), and a fine (F).  Furthermore, the medium 
and fine meshes should not be the outcome of minor refinements if a reasonably stern test of converging is 
to result.  To avoid this shortcoming, at the outset we systematically refine meshes throughout by scaling 
element lengths by a scale factor λ with 

 2λ ≈  (2) 

For = 2λ , a sample sequence of meshes for a rectangular plate is illustrated in Figure 2.  For a general λ , 
if h is a linear measure of representative element size in the originating coarse mesh, we have the following 
sequence of mesh sizes: 

 2C - , M - , F -h h hλ λ  (3) 

This leads to numbers of elements for different dimensional problems as in Table 1. 



 

 

 

Figure 2.  Sample mesh refinement ( )= 2λ for a rectangular elastic plate (a) coordinates 
and coarse mesh, (b) medium mesh, (c) fine mesh 



 

Table 1:  Element numbers in mesh sequences for checks 
 

Mesh 

 

1D 

 

2D 

 

3D 

 

C 

 

N 

 

N 

 

N 

M Nλ  2 Nλ  3 Nλ  

F 2 Nλ  4 Nλ  6 Nλ  

 

On such mesh sequences, we initially adopt the following convergence checks.  We judge the stress FEA to 
be converging if  

 - -m c f mσ σ σ σ>  (4) 

provided ( ) ( )22- + - 0,c m m fσ σ σ σ ≠  where σ  is the stress of interest and subscripts distinguish the mesh 

used to calculate it (if = = ,c m fσ σ σ we judge the result to not only be converging, but also have 
converged)1.  Given compliance with (4), we judge the stress FEA to have converged if 

 -f m f seσ σ σ <  (5) 

provided 0,fσ ≠  where se is the relative error level sought.  In practice, usually se less than 0.01 (1%) 
serves as an excellent level, less than 0.05 (5%) as a good level, and less than 0.1 (10%) as a satisfactory 
level, though certainly more stringent levels can be set. 

We have used convergence checks of this ilk for some time (e.g., Reference 13, 1982), though only 
relatively recently explicitly stated them (Reference 14, 1999).  We make no claim of originality, either for 
Reference 14 or the present paper.  It seems certain that other finite element users have employed similar, if 
not completely equivalent, checks in applications (though, to date, we have not found an explicit statement 
of such checks). 

Before turning to divergence, it is important to set expectations re the likely success of the convergence 
checks in (4), (5).  No such checks can rigorously be guaranteed to predict convergence when it truly 
occurs.  More importantly, conversely no such checks can rigorously be guaranteed to predict divergence 
when it truly occurs.  Given, therefore, some element of judgment is involved, caution is appropriate to try 
and realize conservativeness in practice.  That is, to avoid predicting convergence when in fact key stresses 
from the FEA are diverging.  

With this caveat in mind, we adjoin the following additional requirement for converging to (4): 

 ( )( ) 0m c f m- -σ σ σ σ >  (6) 

unless =m fσ σ (if =m fσ σ , we judge the result to be converging and converged).  When (4) holds but (6) 
does not, further meshes are to be run to decide if FEA stresses are converging.  This added condition 
removes oscillatory convergence from consideration, a response for which it is difficult to estimate 
discretization errors in FEA stresses directly.  It also reduces the probability of predicting convergence 
when in fact stresses are oscillatory and diverging, as on rare occasions they can be in elasticity. 

                                                           
1 One might think that fσ could simply play the role of the exact solution and take -  > -f c f mσ σ σ σ  as a 
converging check instead of (4): Such a check fails to detect the presence of stress singularities. 



 

 Singularity signatures 
When (6) is complied with but (4) is not, we have two possibilities:  the FEA is not yet apparently 
converging/converged on the mesh sequence at hand, or the FEA is diverging.  The former occurs when the 
fine mesh result for the stress of interest is still a long way from the true result because of the coarseness of 
even this mesh.  The latter occurs when stress singularities are present.  Being able to distinguish which 
circumstance is applicable is useful because it determines whether more refined FEA is useful, as in the 
former case, or useless, as in the latter case.  The most reliable means of distinction is via asymptotic 
identification of stress singularities (see Reference 4 for a recent review).  Absent asymptotics, we use the 
following singularity signatures to determine their presence. 

Stress singularities occur in two predominant forms in elasticity:  power singularities and logarithmic 
singularities.  For power singularities, the local stress σ behaves like 

 ( )-
0=    as   0O r rγσ σ →  (7) 

wherein 0σ  is an applied stress, r is a dimensionless radial distance from the singular point, and γ  is the 
singularity exponent.  For logarithmic singularities, σ behaves like2 

 ( )0=  ln    as   0O r  rσ σ →  (8) 

With local FEA values of σ being typically extrapolated from nearby points in the elements adjoining the 
singular point, and these elements being refined as in (3), the following singularity signatures result:  for 
power singularities 

 ~ ~   as   0fm

c m

 hγσσ
λ

σ σ
→  (9) 

and for log singularities 

 0- ~ - ~ ln    as   0c m m f  hσ σ σ σ σ λ →  (10) 

The result in (10) is the underlying reason for the strictly greater than sign in condition (4) for converging.  
To implement the asymptotic results in (9) and  (10), we proceed as follows. 

For power singularities, we obtain successive estimates of the singularity exponent via 

 ( ) ( )ˆ = ln ln , = ln lnm c f m    γ σ σ λ γ σ σ λ     %  (11) 

provided ,  and c m fσ σ σ are all of the same sign and 0.cσ ≠  Then we judge exponent estimates to be 
constant and a power singularity present if 

 
ˆ2 -

0.1
ˆ +
γ γ
γ γ

<
%

%
 (12) 

That is, the change in exponent is less than 10% of its average value.  This percentage is provisional:  
Ultimately we need to validate it on numerical experiments.  Given validation, then we judge there to be no 
power singularity if (12) does not hold. 

For logarithmic singularities, we obtain successive estimates of the increment in the stress when (6) holds 
via 

 = - = -c m c m f m,      σ σ σ σ σ σ∆ ∆  (13) 

Then we judge increments to be constant and a log singularity present if 

                                                           

2 In (1), 0σ  effectively is ( )( )22 1- 2 - .Eφ ν π φ    
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σ σ
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That is, the same provisional percentage change as for (12).  In effect, (14) sets the range for which 
numerical equality is judged to hold between the terms on either side of (4), and an FEA is deemed to be 
diverging because of a log singularity.  If neither (12) nor (14) hold when (4) does not hold, we judge the 
FEA to be not yet apparently converging/converged, henceforth termed nonconvergent. 

Typically with stress singularities, other contributions to the stress at the singular point are o(1) as r→0.  
On occasion, however, stress singularities occur in concert with a hydrostatic pressure that can mask their 
presence.  When this is the case, (13), (14) can still be used to identify log singularities, but (11), (12) 
require adaptation to be effective in identifying power singularities.  If the magnitude of the hydrostatic 
pressure is known, it can simply be subtracted out and (11), (12) then used.  If the magnitude is not known, 
(11) needs to be replaced by 

 ´- -
ˆ = ln ln ,   = ln ln 

- -
f m f f

m c f m

σ σ σ σ
γ λ γ λ

σ σ σ σ

    
            

%  (15) 

then (15), (12) used.  In (15), ´fσ  is σ  calculated on a yet more refined mesh than the fine.  For the 
occasional singular configuration, it is also possible for there to be a constant contribution to some but not 
all normal stress components which can mask the singular behavior in these components:  Then simply 
considering other normal stresses helps reveal the singularities presence.  Even with such adjustments, 
regular stresses can camouflage singular stresses to some extent.  Accordingly we judge a singularity to 
occur if any stress component satisfies (12) or (14) at the location of the key stress of interest, and thus key 
stress values there to be unacceptable. 

 

 Alternative convergence-divergence checks 
When 2,λ =  stern convergence checks result, but the numbers of elements in the fine mesh are 4N, 16N 
and 64N for 1D, 2D and 3D problems, respectively (see Table 1).  With some planning when constructing 
the initial coarse mesh, and given today’s computer capabilities, this should be feasible for 1D and 2D 
problems.  However, for 3D it may prove to be too computationally taxing. 

One means of reducing computational effort is to confine mesh refinement to the vicinity of where the 
stress of interest acts:  We investigate this possibility further with our test problems.  Another means is to 
use a smaller scale factor, but still one that results in a fairly stern convergence check.  A choice of  

3 2λ = would seem to be a reasonable compromise in this regard.  Then element numbers for the mesh 
sequence of (3) are N, 3.4N and 11.4N in 3D.  If this still proves too taxing, a mesh sequence formed by 
first coarsening the coarse mesh then refining it may make computation feasible:  that is, a sequence with 
0.3N, N and 3.4N in 3D. 

Presumably also with a view to reducing computational effort, some alternative convergence-divergence 
checks are sometimes practiced in FEA.  The first of these alternatives employs a mesh sequence with 
linearly increasing numbers of elements.  Thus convergence-divergence checks on the mesh sequence 

 C - , M - 2 , F -3N N N  (16) 

and so on.  This sequence is used irrespective of the dimension of the problem, so 3D problems are more 
computationally tractable.  Here we would use it in conjunction with (4), (5), (6) to try to gauge converging 
and converged, and  (12), (14) to try to distinguish diverging from nonconverging. 

Clearly as the sequence in (16) continues, we have diminishing changes in meshes to the point of being 
minor (e.g., …100N, 101N, …).  This makes it all too easy for (4), (5), (6) to be complied with when the 
FEA may be not converged, or worse, not converging.  Thus such linearly increasing sequences have the 
potential of being nonconservative.  However, possibly in practice at the outset, the sequence of (16) 
suffices and thereby reduces computation.  We investigate this possibility subsequently. 

The second of these alternatives employs just a two-mesh check.  Here, then, convergence-divergence 
checks on the first two meshes of (3) using just the counterpart of (5) on C and M meshes to decide if 



 

converged or not.  This abbreviated sequence is used irrespective of the dimension of the problem, so 
potentially taxing computations for fine meshes in 3D are avoided. 

This two-mesh approach would appear to be quite vulnerable to being nonconservative.  With just two 
meshes, nonconservative estimates of final discretation error can easily result with oscillatory convergence, 
something not guarded against by (6) because it cannot be applied.  Further, there is no assessment of 
converging.  Consequently there is the increased possibility of judging an FEA to have converged, when in 
fact it is diverging because of a weak singularity with small, but not decreasing, stress increments.  We 
investigate these concerns for two-mesh checks subsequently. 

Evaluation via an error model 
 

 Error model 
We define the local discretization error e for the stress of interest σ  by 

 ( ) ( )= -  sgn a h ae σ σ σ  (17) 

where aσ is the actual or true value of , hσ σ the value as determined via FEA on a mesh of size h, and sgn 

is the signum function.  With this definition, e is positive whenever < < < .c m f aσ σ σ σ   That is, 

whenever aσ in magnitude is approached from below, the norm in FEA.  Then we adopt the following 
simplified model for e: 

 ( )0 0= ce e h h  (18) 

wherein 0e is the value of e on an initial mesh of size 0 ,h  and c is the effective convergence rate (c>0 for 
convergence). 

Asymptotically as 0,h →  values of c are known (see, e.g., Cook et al., Reference 6, Chapters 4, 9).  For 
example, for a four-node quadrilateral element in plane elasticity, typically ~ 1.c   This is so provided the 
problem for FEA is sufficiently continuous.  Then c can even be increased, using superconvergent recovery 
techniques, to ~ 2c (see Zienkiewicz et al., Reference 8, Chapter 13).  However, even asymptotically, c is 
reduced absent sufficient continuity.  For example, for conforming elastic contact problems, ~ ½c near the 
edge of contact once contact extent is established, and for a stress-free proud corner subtending an angle of 
150º in an elastic solid, c~1/5, 0.534, in the vicinity of the corner for states of antiplane shear, plane strain, 
respectively (from, e.g., Reference 4, Sections 4.1, 2.1).  Moreover, these three lower rates apply to higher-
order elements such as the eight-node quadrilateral when used on the given examples, despite the fact that 
typically ~ 2c for eight-node elements.  In general, then, quite a range of asymptotic convergence rates can 
result in the FEA of stresses. 

Such variations are compounded for the effective convergence rate, c, of the simplified error model of (18).  
This model approximates actual power series in h for e with but one term.  With h sufficiently small, the 
effective c of (18) does approach asymptotic values.  However, for h as used in practice, c of (18) can differ 
appreciably from asymptotic values.  For example, if c has two contributions of O(h) and O(h2) of the same 
sign, c can be close to 2 on a given three-mesh sequence, rather than its asymptotic value of 1.  Further, if 
these two contributions are of opposite sign, c can be markedly less than 1 and even negative on a given 
three-mesh sequence.  Hence, in practice, the determination of an effective convergence rate can be quite 
sensitive to the mesh size used. 

 
 Simple checks:  Modified converged checks 
Despite the somewhat capricious nature of c in the simplified error model of (18), we apply this model to 
our mesh sequence of (3) with h therein replaced by h0.  Assuming > 0aσ  to aid the exposition, we thus 
have 

 2
0 0 0= ,   - = ,   - =c c

a c a m a f- e e eσ σ σ σ λ σ σ λ  (19) 



 

Eliminating aσ  by subtracting the second of (19) from the first and the third from the second, thereafter 
eliminating 0e  by forming a quotient of the results, then taking logs, gives 

 = ln ln 
-

m c

f m

-c σ σ λ
σ σ

 
  
 

 (20) 

The same result holds for < 0.aσ   Under (6), c of (20) is guaranteed real.  Further, convergence with c>0 
occurs in (20) if and only if (4) holds.  Hence a justification of our converging criterion when the simplified 
error model of (18) applies. 

In effect in (5) we have an estimate of the absolute value of the relative discretization error e  where  

 = ae e σ  (21) 

Denoting this estimate by ˆ,e  we have 

 ˆ = -f m fe σ σ σ  (22) 

Now using the simplified error model of (18) and substituting in (21), (22) from (19) gives 

 
-1ˆ

=
1-

c
e
e e

λ
 (23) 

provided 1,e ≠  where e  here is the relative discretization error for the fine mesh.  If > 2cλ and 0,e >  the 
ratio in (23) is greater than 1, and ê is a conservative estimate of .e    

To guard against 2,c <λ and thereby ê  leading to a nonconservative estimate, we adopt the modified 
estimate e%  where 

 ˆ= -1 ,   < 2c ce e λ λ%  (24) 

with c as estimated by (20).  That is, if = 2,λ  we use (24) instead of (22) when < 1,c  and if = 3 2,λ  
when c < 1.71.  Now, therefore, our converged check compares ê  of (22) with se  when 

( ) s2,  of  24  with when < 2.c ce eλ λ≥ %  We use this modified converged check on low-order elements (four-
node quadrilaterals, three-node triangles).   

For second-order elements (eight-node quadrilaterals, six-node triangles), we try to take advantage of their 
potentially improved convergence rates in problems other than contact problems by taking, instead of (24), 

 
2

ˆ= -1 ,   2

ˆ= -1 ,   2

ce e c

e e c

λ

λ

≤

>

%

%
 (25) 

with c continuing to be estimated by (20).  The first of (25) includes (24).  The second of (25) limits the 
degree to which we use estimated c to extrapolate error estimates.3 

Even with these modifications, our converged check can still be nonconservative ( ê  or e%  < e ).  This can 
happen when < 0e and peak stresses are approached from above (see (23)).  While this is not the norm in 
FEA, it can happen.  However, then we should at least be alerted to the possibility of a nonconservative 
error estimate by having > > .c m fσ σ σ  It can also happen when c of (20) overestimates the actual 
effective convergence rate.  We can obtain an appreciation of how often this actually happens from our 
later numerical experiments. 
                                                           
3 For yet higher-order elements, one could extend the range of applicability of the first of (25) to yet higher 
values of c.  This possibility is not investigated here. 

 



 

 Alternative checks:  Divergence detection? 
We also use the simplified error model of (18) to evaluate the alternative convergence-divergence checks, 
paying special attention to when these alternatives can be nonconservative. 

For the linearly increasing mesh sequence of (16), the counterpart of (3) is 

 1 1C - , M - 2 , F - 3i ih h  h  (26) 

where i = 1, 2, 3  for 1D, 2D, 3D, respectively, is the number of dimensions involved.  Then applying (18) 
to the mesh sequence of (26) with h therein replaced by h0, and proceeding as previously, yields 

 
- 6 - 3=

3 - 2

c i c i
m c

c i c i
f m-

σ σ
σ σ

 (27) 

From (27) when (6) holds, we find our converging check (4) to be complied with when 

 > -c  i  (28) 

Clearly since c < 0 corresponds to divergence, this alternative can be nonconservative:  That is, predict 
convergence when in fact FEA stresses are diverging.  Moreover, the higher the dimension of the problem 
being analyzed, the more likely such nonconservative predictions are to result. 

For the two-mesh check, applying (18) to the counterpart of (22) gives 

 
( )
( )

0 1-1
ˆ =

1-

c

a

e
e

e

λ

σ
 (29) 

where ê  and e are the estimated and actual, relative, discretization errors for the medium mesh.  Thus the 
two-mesh counterpart of (5) can be met if 1, 0,c  cλ → <  and FEA stresses are actually diverging, albeit 
slowly.  Further, normalizing (29) by e for the medium mesh leads to (23) except that now ê , e are for the 
medium mesh.  As for (23), this can be nonconservative whenever < 2.cλ  Now, though, absent a third 
mesh we do not have available an estimate of c as in (20) to help remedy the situation as in (24) or (25).  
Consequently this alternative can give nonconservative estimates of discretization errors.  As pointed out 
earlier, it can also be nonconservative when (6) does not hold and we have oscillatory convergence. 

 

Evaluation via a series analogy 

Series analogy and test series 
As a 1D analogy, we recall classical series summation.  We denote partial sums NS  of the sequence { }na  
by 

 
=1

=
N

N n
n

S a∑  (30) 

Thus in our series analogy, N becomes the number of terms in the sum instead of the number of elements.  
To aid the exposition, we take > 0.na  Hence NS is absolutely convergent if the limit N →∞ is bounded.  
A necessary condition for NS  to be so convergent is that 

 
lim

= 0na
n →∞

 (31) 

Further, from d’Alembert’s ratio test, 
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+1
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   < 1  convergent series

lim
   > 1  divergent series

n

n

n

n

a
n a

a
n a

⇒
→∞

⇒
→∞

 (32) 

This test fails if the ratio equals 1. 

We now view the value of stress of interest, σ , as the outcome of a sequence of FEA determinations 
summed in accordance with 

 ( ) ( )= + - + - + ...c m c f mσ σ σ σ σ σ  (33) 

To interpret these successive terms as na  in (30) with > 0,na  we assume 0 < < < < .c m f aσ σ σ σ  Then 
our converging check (4) under (6) is analogous to the ratio test of (32), except that we do make a 
determination of divergence when the ratio is 1, and our converged test is analogous to the necessary 
condition of (31). 

To explore this analogy further, we seek to apply our checks of (4), (5), and (6), as well as (12), (14), (22), 
(24) and (25), to a set of series which are independently known either to be convergent or divergent, and 
see how well our checks predict this behavior.  A first candidate pair of series to this end are the classical 
arithmetic progression (AP) and geometric progression (GP): 

 
( )

( ) ( )
     = , = +1 2

= , = 1- 1-
n N

n N
n N

a n S N N

a  Sα α α α
 (34) 

whereα  is a constant.  The GP of (34) is convergent if < 1α , divergent otherwise, while the AP is simply 
divergent.  Some other series that can be used in this way are given in Table 2, together with asymptotic 
values as N →∞ from integral estimates, .NS%   In NS% , 1 2= 1.459, = 2.613,C C and Γ is Euler’s constant:  
These asymptotic values apply for 4N ≥  and are actually accurate to within 0.1% for all such N.  The first 
of the series in Table 2 diverges as √N, and so is like a power singularity:  The second diverges as lnN, and 
so is like a log singularity.  The remaining series are convergent with slow convergence akin to a contact 
problem, linear convergence as can occur in a regular problem with low-order elements, and rapid 
convergence as can be the case with high-order elements. 



 

Table 2:  Test series 
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 Simple checks with modifications 
Because all > 0na , (6) is automatically complied with.  To check (4), we form the ratio 

 4 2

2

-=
-

N N

N N

S SR
S S

 (35) 

Then (4) for = 2,λ  in effect, has the series converging if < 1R , diverging or nonconvergent if 1.R ≥  

From (34) for the AP, R ~ 4 > 1 as N →∞ , so (4) correctly predicts not converging for large N.  In fact,   
R > 1 for all N, so that this correct prediction holds for any N.  Further, (12) holds for N 2≥ and ~ 2.γ   
This series, therefore, could be interpreted as equivalent to the power singularity associated with a 
concentrated moment.  Irrespective of how appropriate such an interpretation is, (12) certainly predicts that 
the series is divergent rather than just nonconvergent. 

From (34) for the GP, 

 ( )= 1+N NR α α  (36) 

Hence (4) predicts the series is convergent if 

 
1

2<
1+ 5

N

α  
 
 

 (37) 

While (37) is true, it is conservative:  In reality, the GP is convergent for any < 1.α  

For the other series of Table 2, the asymptotic values of R of (35) given in this table show that (4) predicts 
the first two to be not converging and the last three to be converging, as is indeed the case.  Moreover (4) 
does this for all N≥ 1, not just .N →∞    

For ½= 1 ,na n  (12) is complied with for 1,N ≥  so divergence analogous to a power singularity (with 
~ ½γ ) is predicted rather than just a nonconvergent series.  For = 1 ,na n  (14) is complied for 2,N ≥ so 

divergence analogous to a log singularity is predicted rather than just a nonconvergent series.  Given the 
asymptotic expressions NS%  in Table 2, both of these predictions would seem to be appropriate. 



 

For 3 2= 1 ,na n  the analogue of (22) with = 2λ  has 
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so ê  is nonconservative.  Now, though, (20) gives c~ ½, so our modified estimate of (24) applies.  This 
gives 
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1     as   e ~ N
C N

→∞%
p

 (40) 

Hence an asymptotically correct estimate and support for our adoption of the modified error estimate of 
(24) when convergence is slow. 

For 2= 1 ,na n we have, from the analogues of (22), (21), 

 2

3ˆ ~ ~     as   
2

e e N
Nπ

→∞  (41) 

Hence an asymptotically correct error estimate.  Here (20) gives c~1, so with = 2λ there is no need to 
apply (24). 

For 4= 1 ,na n  we have 

 4 3 4 3

105 15ˆ ~ ,   ~     as  
32 32

e e  N
N Nπ π

→∞  (42) 

Hence a conservative estimate by a factor of 7.  Now, though, (20) gives c~3, so applying (25) we have 

 4 3

35~     as   
32

e  N
Nπ

→∞%  (43) 

Hence still a conservative estimate but a more accurate one. 

Thus applying our convergence-divergence checks correctly predicts divergence whenever series actually 
diverge.  Further, these checks typically predict convergence whenever series actually converge, the 
exception being for some convergent GP for which they predict not converging.  Companion error 
estimates, modified where appropriate, are asymptotically accurate, or if not, at least conservative.  All told, 
a satisfactory and conservative performance by these checks. 

 

 Alternative checks:  Divergence detection? 
For the first alternative with linearly increasing numbers of elements, the analogue of (4) has series 
converging when > 0na if 

 +1 +1 +2 +1 +2= - > - =N N N N N Na S S S S a  (44) 

That is, requiring na be decreasing in magnitude, as in (31).  While (31) is a necessary condition for 
convergence, it is not sufficient.  Accordingly, although (44) can predict convergence when series are 
indeed convergent, it can also predict convergence when series are divergent.  An example of the former is 
the GP; for this series, (44) correctly predicts convergence when < 1.α  An example of the latter is the 
harmonic progression of Table 2, = 1na n ; for this series, (44) incorrectly predicts convergence when, in 
fact, the series is divergent.  A further example is ½= 1na n where again (44) predicts convergence when 



 

the series is divergent.  As with the previous error model evaluation, therefore, this alternative check 
exhibits an inability to detect divergence.  Such an inability represents a serious nonconservative failure for 
this alternative check. 

For the second alternative with a two-mesh check, the analogue for series would have the series being 
satisfactorily summed ( )< 0.1se  when na >0 if 

 ( )2 2- < 0.1N N NS S S  (45) 

For the AP, (45) is never complied with so that this series would never be regarded as summed.  However, 
for the harmonic progression 

 ( ) ( ) ( )2 2- ~ ln 2 ln     as   N N NS S S N N →∞  (46) 

Hence for N>1024, (45) is met, and the series is predicted to be satisfactorily summed when, in fact, it is 
divergent. For still larger N, (46) with a two-mesh check could even indicate summation to within an 
excellent error level.  Analogously to the previous error model evaluation, therefore, this alternative check 
exhibits an inability to reject diverging results.  Such an inability represents a serious nonconservative 
failure for this alternative check. 

 

Numerical experiments:  Diverging stresses with power 
singularities 
 

 Simple checks with modifications 
Here we apply our simple convergence-divergence checks, modified when appropriate, to see if they can 
detect divergence on a set of trial problems with power singularities. These are ‘trial’ problems rather than 
true test problems because they do not have known exact solutions throughout the elastic solid for analysis:  
However, these trial problems do have known, asymptotically-identified, stress singularities at a point in 
the elastic solid, and this level of analytical knowledge suffices for the present assessment. 

These singular trial problems are for:  bimaterial reentrant corners under tension, butt joints under tension, 
reentrant corners under tension and both in-plane and out-of-plane shear, and elastic half-spaces indented 
by rigid flat-ended punches.  All told, 14 different problems with known power singularities. 

A variety of 2D ANSYS elements are used in the analysis of these singular trial problems:  four-node 
quadrilaterals (4Q, PLANE42 of Reference 15), eight-node quadrilaterals (8Q, PLANE82 of Reference 15), 
six-node triangles (6T, PLANE2 of Reference 15), and three-node triangles (3T, triangle option in 
PLANE42 of Reference 15).  This variety is employed to assess the robustness of our convergence-
divergence checks with respect to element choice.  Typically these elements are run in the plane strain 
mode, the axisymmetric mode only being used for one contact problem.  Given the general asymptotic 
equivalence of plane strain and axisymmetric singular stresses in elasticity (Zak, Reference 16), we do not 
expect much difference between the FEA of these two states; This axisymmetric, singular, contact problem 
is merely run to confirm this expectation by comparison with its plane strain counterpart. 

For the bimaterial corners, free meshes with nearly uniformly-sized elements are used (AMESH, Reference 
15).  For the other problems, uniform structured meshes are used.  All problems are analyzed on at least 
three meshes with systematic refinement as in (3) with = 2λ (see References 17-20 for details). 

There are, of course, superior approaches to the FEA of singular stress problems given one acts on an 
awareness of a stress singularity’s presence at the outset.  Then for inverse-square-root singularities, there 
are quarter-point elements (Henshell and Shaw, Reference 21; Barsoum, Reference 22), and for other 
singularities, other mid-side node placements (Wait, Reference 23).  Alternatively, elements adjoining the 
singular point can be enriched with analytical expressions reflecting asymptotic singular character, or, at 
the very least, element sizes can be significantly reduced in the vicinity of the singularity to capture it 
better.  All such approaches would presumably then seek to determine the coefficient of the stress 
singularity, rather than the singular, and thus locally infinite, stress itself (see Reference 24 for a fairly 
recent review of various means of extracting singularity coefficients).  With such coefficients accurately 
determined, it might then be possible to use them in a generalized fracture mechanics treatment. 



 

This is not what we are doing here.  Instead we are preceding as if we had no awareness of the stress 
singularity’s presence and asking our convergence-divergence checks to reveal its presence.  Hence the use 
of unbiased uniform or nearly uniform meshes to provide a fair assessment of the effectiveness of our 
convergence-divergence checks in this regard. 

A total of 60 such meshes are run on the trial problems with power singularities to assess the ability of our 
convergence-divergence checks to detect FEA divergence.  Viewing one three-mesh sequence as a single 
numerical experiment, these meshes give rise to 26 experiments.  Here we present some selected results, 
then merely summarize the performance of our convergence-divergence checks re divergence detection 
(companion detailed results are set out in Appendix A). 

As a first selected example, we consider an elastic bimaterial plate with a right-angled reentrant corner 
under tension (Figure 3, = 90ºφ ).  In addition to boundary conditions applying a normal transverse 
traction 0σ , the plate has stress-free conditions on the corner flanks and symmetry conditions on the 
boundary at =x l (Figure 3).  The upper and lower halves are perfectly bonded on y = 0 (Figure 3).  The 
halves have a common Poisson’s ratio of ¼, but distinct Young’s moduli of + -, E E  for > 0, < 0,y y  
respectively.  Here we consider + - = 16.E E  From Bogy (Reference 25), this choice may be shown to lead 
to two singularities: 
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 (47) 

where sσ  is any singular stress component at the singular point, and r is now as in Figure 3.  With mesh 
refinement, then, we can expect the stronger singularity to dominate and ˆ, γ γ% of (11) to approach 0.374 
with (12) holding:  It remains to be seen how true this is for actual FEA results, especially given the 
presence of a second singularity. 

 

Figure 3.  Bimaterial elastic plate with a reentrant corner under tension 

The FEA of this bimaterial configuration uses free meshes of 6T elements (see Reference 17 for further 
specifics).  We thus have results as in Table 3 for the maximum normalized stress 



 

 ( )max 0= at = = 0y x yσ σ σ  (48) 

where coordinates are as in Figure 3.  Like results for other corners are given in Appendix A, Table 15. 

Table 3:  Divergence detection for a bimaterial corner under tension  ( + - = 16E E ) 
 

m 

 

maxσ  

 

maxσ∆  

 

ˆ, γ γ%  

 

1 

 

8.82 

 

 

2.74 

 

 

0.390 

 

4 

 

11.56 

 

 

3.55 

 

 

0.386 

 

16 

 

15.11 

  

 

In Table 3, the mesh number, m, reflects the number of elements used.  Specifically 

 1=mN mN  (49) 

where 1 = 128N is the number of elements in mesh 1, the initial coarse mesh, and mN  the number in mesh 
m. Hence for the m of Table 3, refinement as in (3) with = 2.λ   Further, maxσ∆ is the difference between 

maxσ on successive meshes, hence the counterpart of the differences in (4). 

Clearly in Table 3, (6) is complied with but (4) is not, so our convergence-divergence checks do not predict 
convergence.  Then (11) has successive exponent estimates as in Table 3, yielding 
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= 0.01
ˆ +
γ γ
γ γ

%

%
 (50) 

in compliance with (12), so our convergence-divergence checks correctly predict the presence of a power 
singularity.  Moreover, despite the presence of a second singularity of weaker yet comparable strength, the 
singularity exponent ultimately estimated is close to the actual exponent (3% higher, see (47)). 

This first example is for a strong singularity.  A sterner test of our convergence-divergence checks results if 
we have a weaker power singularity.  Accordingly, as a second selected example, we consider an elastic 
bimaterial plate with a butt joint under tension (Figure 4).  Aside from the application of 0σ , the plate is 
stress free on its edges.  The adherend (Young’s modulus +E ) and adhesive ( -E ) are perfectly bonded on 
their interface at = 20y l (Figure 4).  The adherend and adhesive have a common Poisson’s ratio of 1/3, 
but distinct Young’s moduli with + - = 2.E E  Absent a reentrant corner and with a smaller material 
discontinuity, this configuration should be less singular than our first:  Indeed, this is the case.  From Bogy 
(Reference 26), we now have 
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 (51) 

where r is as in Figure 4. 

The FEA of this bimaterial configuration uses structured uniform meshes of 4Q elements.  The initial 
coarse mesh has 1 = 110N on R via symmetry (see Figure 4).   Subsequent meshes have 

 ( )2 -1
1= 2 m

mN N  (52) 



 

elements, m = 2-5 being the mesh number for this analysis.  Thus meshes in compliance with (3) for = 2.λ  
Results for this particular butt joint are as in Table 4 wherein now 

 ( )max 0= at = , = 20y x l y lσ σ σ  (53) 

with coordinates as in Figure 4.  Like results for a butt joint with a stronger singularity are given in 
Appendix A, Table 15. 

 

Figure 4.  Butt joint between elastic plates under tension 

 

 

 

 

 

 

 

 

 



 

Table 4: Divergence detection for a butt joint under tension ( + - = 2E E ) 

 

m 

 

maxσ  

 

maxσ∆  

 

ˆ, γ γ%  

 

1  

 

1.0326 

 

 

0.0180 

 

 

0.025 

2 1.0506  

0.0231 

 

0.031 

3 1.0737  

0.0270 

 

0.036 

4 1.1007  

0.0299 

 

0.039 

5 1.1306   

 

Clearly in Table 4, again (6) is complied with but (4) is not, so our convergence-divergence checks do not 
predict convergence.  Then (11) has successive exponents as in Table 4.  Using these pairwise for meshes 
1, 2 and 2, 3, then 2, 3 and 3, 4, and finally for 3, 4 and 4, 5, there results the following values for the 
quotient of (12): 

 
ˆ2 -

= 0.21, 0.15, 0.08
ˆ +
γ γ
γ γ

%

%
 (54) 

Hence on meshes 1-4, (12) is not complied with and our convergence-divergence checks have that the FEA 
does not, yet anyway, reveal a power singularity.  While this represents a lack of resolution on the part of 
the checks on these results, noncompliance with (4) at least means that a stress analyst would not accept 
them as either converging or converged.  On meshes 4, 5, (12) is complied with and our convergence-
divergence checks correctly predict the presence of a power singularity.  Again the singularity exponent 
ultimately estimated is quite close to the actual exponent (7% lower, see (51)).4 

As a third and final selected example, we consider another weak power singularity.  This concerns an 
elastic plate with a right-angled reentrant corner as in Figure 3 when = 90ºφ , but now comprised of a 
single material and under a shear traction of magnitude 0τ on the upper and lower edges.  The corner flanks 
continue to be stress free and now a counterbalancing moment is supplied via constant normal tractions on 
the plate edge at x = l.  Absent a material discontinuity and with shear loading, a weaker singularity than in 
(47) should result:  Indeed this is the case.  From Williams (Reference 27), we now have 
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 (55) 

where r reverts to as in Figure 3. 

                                                           
4 This particular configuration was also subjected to a subsequent submodel around the singular point.  The 
submodel used 4Q elements and followed the procedure in Reference 11.  It resulted in successive 
estimates of γ  of 0.041, 0.042; hence a demonstration that our convergence-divergence checks can reveal 
power singularities with just local refinement. 



 

The FEA of this reentrant corner configuration uses structured uniform meshes of 3T elements.  The initial 
mesh has 1 = 192N and subsequent meshes have element numbers as in (52) (see Reference 18 for further 
specifics).  Results for this particular corner are given in Table 5 wherein 

 ( )max 0= at = = 0xy x yτ τ τ  (56) 

with coordinates as in Figure 3.  Results for other reentrant corner configurations with stronger singularities 
are given in Appendix A, Table 17. 

Table 5: Divergence detection for a 90º reentrant corner under in-plane shear 
 

m 

 

maxτ  

 

maxτ∆  

 

c 

 

ˆ, γ γ%  

 

1  

 

3.594 

 

 

0.402 

  

 

2 3.996  

0.310 

0.37 - 

 

3 4.306  

0.294 

0.08 - 

 

4 4.600  

0.303 

- 0.095 

 

5 4.903   0.092 

 

In Table 5, both (6) and (4) are complied on meshes 1-4, so our check has the maximum shear stress 
converging despite it being singular.  However, calculating c from (20) results in the successive low values 
(<1) given in Table 5, whence successive error estimates from (24) of 

 = 0.25, 1.12e%  (57) 

Thus unsatisfactory error levels, and our modified convergence-divergence checks would at least not 
predict maxτ  had converged.  In fact, on meshes 2, 3, 4, (14) is complied with and a log singularity 
predicted.  While this is actually an errant prediction, it would certainly not see maxτ being viewed as 
acceptable. 

On the 3, 4, 5 mesh sequence, (6) is complied with but (4) is not, so ˆ, γ γ%  values are calculated and included 
in Table 5.  These values satisfy (12), the quotient therein being 0.03, so on these more refined meshes the 
weak power singularity present is detected.  Again the singularity exponent ultimately estimated is quite 
close to the actual exponent (1% higher, see (55)). 

It transpires that the results in Table 5 are the only ones that comply with (4) in the trial problems with 
power singularities.  Thus (4) detects divergence or nonconvergence in 24/26 experiments (see Appendix 
A, Tables 15, 17, 18 for the additional results).  Further, once (4) is not complied with, (12) indicates a 
power singularity in 23/24 experiments.5  For the present set of numerical experiments, this performance is 
not significantly effected by the use of free meshes instead of structured (Apendix A, Table 15 cf. Table 
17a), or different 2D stress states (plane strain, antiplane shear, axisymmetric; Appendix A, Tables 17, 18). 

 

                                                           
5 In 11 other experiments on 6 problems with power singularities (References 3, 20, 28), (4) indicated not 
converging in 11/11, then (12) revealed power singularities in 9/11. 



 

 Alternative checks:  Divergence detection? 
We now use some of our trial problems with power singularities to evaluate the alternative convergence-
divergence checks.  In this evaluation, we are interested to see if these alternatives reject peak stresses 
because they are diverging, or at least because error levels are unsatisfactory. 

We first apply the linearly increasing mesh sequence of (16) to the same bimaterial corner problem as in 
Figure 3 and Table 3.  This problem has two quite strong singularities (see (47)):  Hence diverging stresses 
should be readily detected by an effective convergence-divergence check.  The FEA employs free meshes 
of 6T elements with N1 = 128 (see Reference 17 for further specifics).  Results for peak stresses are given 
in Table 6 wherein m is as in (49). 

Table 6: Divergence detection for a bimaterial corner under tension ( + - = 16E E )  
 

m 

 

maxσ  

 

maxσ∆  

 

ê  

 

1  

 

8.82 

 

 

1.24 

 

 

- 

2 10.06  

0.87 

 

 

3 10.93  

0.63 

0.08 

 

4 11.56  0.05 

 

Clearly in Table 6, the stress increments maxσ̂∆ are monotonically decreasing with mesh refinement.  Thus 
(4) and (6) are complied with on either the mesh sequence 1 1 1 1 1 1, 2 , 3  or 2 , 3 , 4 ,N  N N N N N  and these FEA 
stresses are predicted to be converging.  Then applying (22) gives ê  as in Table 6, and a satisfactory 
ultimate error level on the first sequence, a satisfactory and approaching good level on the second.  Hence 
here this alternative convergence-divergence check would have the stress analyst accept finite stress values 
as satisfactory when in fact the stress is infinite.  Furthermore, the same erroneous conclusions are reached 
with this check on the same mesh sequence for two other corner problems with strong singularities (see 
Appendix A, Table 15).  As earlier, therefore, an inability of this alternative check to detect divergence and 
a nonconservative failure as a check.  Given this continued failure, we henceforth dispense with any further 
assessment of this linearly-increasing-mesh-sequence alternative. 

We next apply the two-mesh check to the stresses in Table 4.  Then the counterpart of (22) realizes the 
following successive estimates as the mesh number m increases: 

 ˆ = 0.02, 0.02, 0.02, 0.03e  (58) 

Hence all stresses would be judged converged to within a good level of accuracy.  Similarly, applying the 
two-mesh check to the stresses in Table 5 realizes: 

 ˆ = 0.10, 0.07, 0.06, 0.06e  (59) 

Hence, while the first estimate, being unsatisfactory, would incur further refinement, subsequent stresses 
would be judged converged to within a satisfactory level of accuracy.  As earlier, therefore, an inability of 
this alternative check to reject divergent stresses and a nonconservative failure as a check.  Given this 
continued failure, we henceforth dispense with any further assessment of this two-mesh alternative. 



 

Numerical experiments:  Diverging stresses with logarithmic 
singularities 

Contact problems 
We start an assessment of the performance of the modified convergence-divergence checks on trial 
problems with log singularities by examining FEA results for peak contact stresses when an elastic half-
space is indented by a smooth rigid wedge (Figure 5).  In the FEA of this plane strain problem, the finite 
region R for analysis simply has roller supports on its underside, and symmetry conditions on its vertical 
boundary down the center of the configuration with stress-free conditions on its other vertical boundary.  
With coordinates as in Figure 5, the maximum, normalized contact stress sought is 

 ( )max = - at = = 0z x z pσ σ  (60) 

wherein p is the average pressure on the wedge.  This stress has a logarithmic singularity akin to that of (1). 
From Sneddon (Reference 2, Section 48.4), 

 ( )= ord  ln  as 0s E r rσ φ →  (61) 

where E is Young’s modulus of the half-space, and now φ is the gap angle shown in Figure 5 and r is a 
dimensionless radial coordinate as in the same figure. 

Analysis uses 4Q host elements in conjunction with surface-to-surface contact elements (CONTA171 and 
TARGE169, Reference 15), and a contact algorithm with a Lagrange multiplier on the contact normal and 
penalty on tangent (Reference 15).6  The rigid wedge is simulated with 4Q elements and a Young’s 
modulus of 106E.  The initial mesh for the half-space is uniform with 1 = 400,N  while the mesh for the 
wedge has but 10 elements with lower nodes aligned with half-space surface nodes.  Subsequent meshes for 
both have element numbers as in (52).  Thus meshes in compliance with (3) for = 2.λ  Results for 

maxσ when -3= 10p E and = 1º and 2ºφ  are given in Table 7 (corresponding gap angles are indicated in 
parentheses). 

                                                           
6 The default contact algorithm in ANSYS (the augmented Lagrangian algorithm) can produce similar 
results to those in Table 7, but requires finer meshes to rid the normal contact stress of spurious tensile 
results. 



 

 

Figure 5.  Elastic half-space indented by a smooth rigid wedge 

 

Table 7: Divergence detection for wedge indentation 
 

m 

 

( )max 1ºσ  

 

maxσ∆  

 

( )max 2ºσ  

 

maxσ∆  

 

1  

 

1.698 

 

 

2.45 

 

1.588 

 

 

3.77 

2 4.145  

4.33 

5.356  

8.03 

3 8.477  

5.16 

13.39  

9.16 

4 13.64  

5.03 

22.55  

9.08 

5 18.67  31.63  

 

For the 1º stresses in Table 7 on mesh sequences 1,2,3 and 2,3,4, (6) is complied with but (4) is not, so 
diverging stresses are predicted.  Checking (12) and (14) shows that neither are complied with, so 
nonconvergent stresses are predicted rather than a log singularity.  Nonetheless the stresses from either of 
these two sequences would still be not acceptable.  On the mesh sequence 3,4,5, both (4) and (6) are strictly 
complied with and converging stresses predicted.  However, from (20), c is low (0.04), and consequently 
from (24), = 9.58,e%  a most unsatisfactory level.  Further, checking (14) finds it to hold (as has to be the 
case whenever < 1 7 for = 2c λ ), and a log singularity is thus correctly predicted. 



 

For the 2º stresses in Table 7, like predictions follow:  That is, nonconvergent stresses on meshes 1,2,3 and 
2,3,4, and a log singularity on meshes 3,4,5.  The contact stress for mesh 5 also approaches being double 
that for a 1º gap, in accordance with (61).7 

 
 Other problems 
As a first other trial problem with a log singularity, we consider FEA results for the peak principal stress at 
a step shear on a half-space (Figure 6).  In this plane strain problem, the square region R for analysis has 
roller restraints on its left-hand vertical boundary and stress-free conditions otherwise except for the 
application of the shear traction 0.τ  From Kolossoff (Reference 30), this configuration has a log singularity 
with 

 ( )0= ord ln as 0s r  rσ τ →  (62) 

where r is a dimensionless radial coordinate as in Figure 6. 

The FEA of this configuration uses 4Q elements with N1=16 and subsequent meshes having element 
numbers as in (52).  Again, therefore, meshes as in (3) for = 2.λ  Results are as in Table 8, wherein 

 ( )max 0= at = = 0p x yσ σ τ  (63) 

with pσ  being the maximum principal stress, and the coordinates are as in Figure 6. 

Table 8: Divergence detection for step shear 
 

m 

 

maxσ  

 

maxσ∆  

 

1  

 

1.122 

 

 

0.226 

2 1.348  

0.240 

3 1.588  

0.229 

4 1.817  

0.350 

5 2.167  

 

                                                           
7 With an earlier ANSYS contact element (circa 1995), more nearly constant stress increments were found 
and log singularities predicted in 3 of 3 wedge problems (Reference 29). 



 

 

Figure 6.  Elastic half-space under a step shear traction 

 

On the mesh sequence 1, 2, 3, (6) is complied with but (4) is not, so diverging stresses are predicted.  
Checking (12) finds it not to be satisfied, so no power singularity is predicted.  Checking (14) finds it to be 
satisfied, so a log singularity is correctly predicted.  On the mesh sequence 2, 3, 4, both (4) and (6) are 
complied with, so converging stresses are erroneously predicted.  Estimating the effective convergence rate 
from (20) gives c = 0.07, hence, from (24), = 2.53,e%  a most unsatisfactory error level and the stress for 
mesh 4 should not be accepted.  Here, given the low c, we can also check (14):  We find (14) to be 
satisfied, so that ultimately a log singularity is correctly predicted.  On the mesh sequence 3, 4, 5, (6) is 
complied with but (4) is not, so diverging stresses are predicted.  Checking (12) finds it not to be satisfied, 
so no power singularity is predicted.  Checking (14) also finds it to be not satisfied, so no log singularity is 
predicted.  Despite this last incorrect prediction, the stresses on this sequence should still be viewed as 
nonconvergent and therefore not acceptable. 

Similar performance of the modified convergence-divergence checks is found for log singularities induced 
by the use of displacement shape functions in boundary conditions in submodeling (see Reference 31 for 
singular fields).  Stress results for two normalized stress components at two nodes in two stress 
concentration ( TK ) problems are given in Appendix A, Table 19 (from calculations for Reference 31).  
Log singularities are only detected in 4/12 experiments, although stresses would be judged unacceptable in 
11/12 experiments.  This does mean, though, that one stress would be judged converging and converged 
( 2 at N  for = 5.6x TKσ ), when, in fact, this stress is logarithmically infinite.  However, at 2N , yσ would be 
judged logarithmically singular, so no stress component should be acceptable at this location.  Nonetheless, 
results for 2 at Nxσ serve notice of the possibility of nonconservative errors when using these checks on 
problems with weak log singularities. 

 

Numerical experiments:  Converging stresses 

Simple problems 
We begin the evaluation of the modified convergence-divergence checks on converging test problems with 
arguably the simplest class of 2D problems, namely those entailing polynomial stress distributions.  For this 
class, stress fields are continuously differentiable so that FEA convergence should proceed smoothly and 



 

convergence checks work well.  In some sense, then, satisfactory performance here is a minimal 
requirement for these checks. 

After Timoshenko and Goodier (Reference 32, Section 18), the polynomial stress fields used here are 
generated from an Airy stress function χ  given by 

 ( ) ( )2 2 2 4 5 431 2
2 3= + 3 - + - 5

2 6 20
 xy x y y y x y

l l l
σσ σ

χ  (64) 

wherein 1 2, σ σ and 3σ are constants representative of applied tractions for stress fields with first-order, 
second-order and third-order polynomials.  These fields act within the elastic plate R of Figure 2.  To pose 
associated test problems, corresponding tractions are applied on = 2 , = ,x l y l and appropriate 
symmetry/antisymmetry conditions on the x, y axes.  We thus have true test problems with the polynomial 
stress fields constituting the exact solutions throughout the elastic plate.  Uniform meshes of 4Q and 8Q 
elements with initial mesh refinement as in Figure 2 are used in the FEA of these test problems.  A total of 
26 such meshes are run on the three polynomial problems.  Viewing one three-mesh sequence for a single 
stress component as a single experiment, these meshes give rise to 38 experiments.  Here we present 
sample results, then merely summarize the performance of the modified convergence-divergence checks re 
convergence assessment (companion detailed results are set out in Appendix B, Table 20). 

The selected polynomial problem is the third-order problem because it presents the greatest challenge to 
FEA.  This problem has antisymmetry conditions on the x axis, symmetry conditions on the y axis, and 
prescribed tractions from (64) with 1 2= = 0σ σ on the other boundaries.  The key local stresses sought are: 

 
( )
( )

3

3

= at = 0, = = 1

= at = 2 , = 0 = 8
x x

xy xy

x y l

x l y

σ σ σ

τ τ σ
 (65) 

The FEA reported here uses 4Q elements with N1 = 8 and subsequent element numbers as in (52).  Thus 
meshes as in (3) with = 2.λ  Results for and x xyσ τ are included in Table 9. 

Table 9: Convergence assessment for third-order polynomial problem 
 

m 

 

xσ  

 

xσ∆  

 

xyτ  

 

xyτ∆  

 

1  

 

2.3849 

 

 

1.0084 

 

5.3000 

 

 

1.2929 

2 1.3765  

0.2796 

6.5929  

0.6838 

3 1.0969  

0.0725 

7.2767  

0.3555 

4 1.0244  

0.0183 

7.6322  

0.1822 

5 1.0061  

0.0046 

7.8144  

0.0923 

6 1.0015  7.9067  

 

For ,xσ the stress increments in Table 9 have (4) and (6) being complied with and converging stresses 
correctly predicted on all four three-mesh sequences.  Then using (20) gives 2c ≈ so that, for 4Q elements, 
(22) applies.  For the three-mesh sequences starting with meshes 1, 2, 3, and  4, in turn, this gives 



 

 ˆ = 0.25,0.07,0.02,0.005e  (66) 

In fact, actual absolute relative errors are 

 = 0.10,0.02,0.006,0.002e  (67) 

Hence error estimates that are uniformly conservative, as could be expected with 2c ≈ and 4Q elements.  
Error levels are also conservative but are comparable:  for meshes 1, 2, 3, unsatisfactory error is predicted 
whereas the actual error is barely satisfactory; for 2, 3, 4, satisfactory is predicted whereas actual is good; 
for 3, 4, 5, good is predicted whereas actual is excellent; and for 4, 5, 6, excellent is predicted as is actually 
the case (recall the classification of error levels following (5)). 

For ,xyτ the stress increments in Table 9 have (4) and (6) being complied with and converging stresses 
correctly predicted on all four three-mesh sequences.  Now using (20) gives c just less than 1 so that (24) 
applies.  For the mesh sequences in turn this gives 

 = 0.11,0.05,0.02,0.01e%  (68) 

In actuality, 

 = 0.09,0.05,0.02,0.01e  (69) 

Hence still conservative but now closer with predicted error levels being the same except for meshes 1, 2, 
3, whereon unsatisfactory error is predicted whereas actual error is barely satisfactory. 

For other polynomial problems and stresses (see Appendix B, Table 20), (4) and (6) are complied with in 
28/30 experiments, and converging results correctly predicted.  For the other two experiments (m = 1-4 for 

2xσ in Table 20a), sign changes in stress increments on the first three meshes have (6) not being complied 
with so our converging check (4) is not applicable.  Thereafter on the next three meshes when (6) is 
complied with, (4) is not, and nonconvergence predicted (neither a power nor a log singularity is predicted).  
Ultimately, on the next three meshes, convergence is correctly predicted.  In fact, this stress on the initial 
mesh sequence is diverging as a result of oscillatory errors.  Hence the convergence-divergence checks are 
not seriously awry in making a prediction of temporary nonconvergence that is late by one mesh. 

For these other polynomial problems when convergence is predicted, error estimates are uniformly greater 
than or equal to actual errors.  Moreover, these estimates are typically more accurate than those of (66), 
with predicted error levels being the same as actual for all 28 experiments.  All told, a conservative and 
quite satisfactory performance of the modified convergence-divergence checks on these elementary 
polynomial problems. 

Another simple class of problems for 2D stresses can be obtained by drawing on the theory of thick-wall 
pressure vessels.  What makes these problems simple is that the stresses, in addition to being continuously 
differentiable throughout a vessel, depend on just a single coordinate.  In some sense, therefore, these could 
be viewed as 1D problems. 

For an elastic pipe under constant internal pressure p (Figure 7), exact solutions for the radial and hoop 
stresses may be found in Timoshenko and Goodier (Reference 32, Section 28).  For a specific pair of radii 
ratios ( )o ir r , an FEA is described in Reference 33.  Results of this FEA for what are, in effect, four 
numerical experiments are given in Appendix B, Table 21.  For all four experiments, (4) and (6) are 
complied with and converging FEA stresses correctly predicted.  Too, in all four experiments for this 
elementary class of problems, error estimates are correctly predicted to attain excellent levels. 



 

 

Figure 7.  Elastic pipe under internal pressure 

 

A more challenging pressure vessel problem with varying internal pressure can be constructed using Love’s 
stress function (see, e.g., Reference 32, Section 131).  Letting χ now denote this axisymmetric biharmonic 
function, a separable solution is 

 [ ] ( ) ( ) ( ) ( )3
3 0 1 1 0= 2  cos +  sin 1 + 1rC p l I K I Kχ ν ζ ζ ζ ρ ρ    (70) 

where C3 = 3.46122 x 10-2, pr is a representative pressure, = , =  with z l r l, z,rζ π ρ π being as in Figure 7, 
and I, K are modified Bessel’s functions of the first, second kinds.  Obtaining stresses from χ using 
standard formulae and applying appropriate components as tractions on the boundaries in Figure 7, then 
provides a test problem (see Reference 33 for details).  These same stresses constitute the exact solution for 
this test problem.  Specifically we take -1 -1and = +½i 0r l = r lπ π  to simplify the expressions involved, 
and set = 0.3.ν  Then we discretize the rectangular area constituting a cross section of the pipe between 

=  and =i 0x r x r  and between z = 0 and z = l (Figure 7) with uniform meshes of 4Q elements.  The FEA 
that follows uses N1 = 8 and subsequent N as in (52), thus refinement as in (3) with = 2λ (see ibid for 
details).  Results for the normalized hoop stress θσ are included in Table 10, with θσ being defined as 

 ( )0= at = , = = 2.0681rr r z l pθ θσ σ  (71) 

 



 

Table 10: Convergence assessment for pipe under varying pressure 
 

m 

 

θσ  

 

θσ∆  

 

c 

 

ê  

 

e  

 

1  

 

3.0571 

 

 

-0.8933 

 

 

  

 

2 2.1638  

-0.1977 

2.18  

0.10 

 

0.05 

3 1.9661  

0.0035 

na   

 

4 1.9696  

0.0268 

nc   

 

5 1.9964  

0.0062 

2.11  

0.003 

 

0.03 

6 2.0026     

 

In actuality for θσ of Table 10, FEA results are converging on the first two meshes, diverging on the next 
two, and converging thereafter.  This somewhat erratic convergence pattern is a consequence of the 
oscillatory nature of the errors here.  As earlier with one polynomial problem, it causes some difficulty for 
our convergence-divergence checks.  Initially they predict convergence ( )2c ≈ , then they are not 
applicable (na) because of sign changes in stress increments, then they predict nonconverging (nc) but not 
diverging due to a singularity, and finally, correctly, converging.  When converging is predicted, error 
estimates are as in Table 10 and are initially conservative but ultimately nonconservative.  However, the 
ultimate estimate only underestimates error by one level, predicting excellent when in fact the error is but 
good.  Again, therefore, a demonstration of some wayward predictions but eventually satisfactory 
performance of the convergence-divergence checks in the presence of oscillatory errors. 

 Stress concentration problems 
In practice, a significant fraction of FEA of 2D elastic stresses is concerned with the determination of stress 
concentration factors, KT.  To span the spectrum of KT typically met, we next consider an elastic plate with 
an elliptical hole under a uniform, transverse, far-field tension of magnitude 0σ (Figure 8).  An exact 
solution for this configuration in terms of complex potentials is given in Kolossoff (Reference 30).  This 
solution gives the normalized maximum stress at the ends of the elliptical hole as 

 ( )max 0= at = , = 0 = 1+ 2y x a y a bσ σ σ  (72) 

In (72), coordinates are as in Figure 8.  Hence by varying the aspect ratio (a/b) of the hole, max=TK σ can 
be made to vary.  Here we choose four aspect ratios such that KT varies from 5 to about 300, a range that 
encompasses and probably exceeds that usually encountered in practice. 

The solution in Kolossoff (Reference 30) is for an infinite elastic plate.  To begin to pose problems on finite 
regions so that we can apply FEA, we take advantage of the symmetry about the x and y axes (Figure 8) to 
restrict attention to a quadrant ( )> 0, > 0 .x y  Thereafter, however, we need appropriate field variables on a 
boundary such as the outer elliptical boundary of R in Figure 8 in order to prescribe boundary conditions 
there.  Such fields are not explicity given in Kolossoff (Reference 30):  They are, though, obtained in 
Cormier et al. (Reference 14).  We use the displacements given in Reference 14 to prescribe conditions on 
this outer boundary and so complete formulations. 



 

 

Figure 8.  Elastic plate with an elliptical hole under tension 

 

For our four elliptical hole problems, we employ a variety of FEA approaches.  Here, we give results for 
structured meshes in elliptical cylindrical coordinates with 4Q and 8Q elements, and for free meshes of 4Q 
elements with and without adaptive mesh refinement, a total of 65 meshes that together realize 36 
numerical experiments.  In Reference 11, results are given for submodeling with 4Q and 8Q elements.  In 
what follows, we first present selected results for a structured mesh, then merely summarize the 
performance of the convergence-divergence checks re convergence assessment for the other FEA 
(companion detailed results are set out in Appendix B, Tables 22, 23, and Reference 11). 

We select results for a/b = 52.155 because this choice leads to a high KT or maxσ , and so challenges FEA.  
The chosen FEA uses 4Q elements with nodes specified by elliptical cylindrical coordinates and N1 = 1024 
(see Reference 11 for details).  Results for maxσ are given in Table 11. 

 

 

 

 

 

 



 

Table 11: Convergence assessment for plate with elliptical hole (KT = 105.31) 
 

m 

 

maxσ  

 

maxσ∆  

 

c 

 

ˆ,e e%  

 

e  

 

1  

 

43.31 

 

 

22.27 

 

 

  

 

2 65.58  

20.35 

0.13  

 

 

 

3 85.93  

12.23 

0.73 2.51 0.18 

 

4 98.16  

4.97 

1.30 0.19 0.07 

 

5 103.13  

1.58 

1.65 0.05 0.02 

6 104.71   0.02 0.01 

 

For all four three-mesh sequences available from Table 11, (4) and (6) are complied with and converging 
stresses correctly predicted.  Initial effective convergence rates are estimated to be low, leading to 
conservative error estimates.  However, error levels are comparable, both estimated and actual error being 
unsatisfactory for the first sequence, and estimated error being still unsatisfactory on the second sequence 
when the error in reality is satisfactory.  Later sequences have estimated and actual errors being good, then 
estimated error being still good while actual error is excellent. 

For this problem and other elliptical hole problems analyzed with structured meshes comprised of 4Q and 
8Q elements, (4) and (6) are complied with and correctly predict converging peak stresses in 18/22 
experiments (see Appendix A, Table 22 for detailed results).  The other four experiments involve a high 
stress concentration ( )= 296TK and entail meshes which are relatively coarse compared to those ultimately 
required for the accurate determination of the peak stress.  For two of these four cases nonconvergent 
results are predicted, while for the other two log singularities are predicted, despite stresses actually 
converging.  Notwithstanding these last errant predictions, results for all four have quite unsatisfactory 
actual error levels and so should not be accepted anyway. 

For the 18 experiments in which (4) and (6) are complied with, error levels predicted by (22), (24) or (25) 
are the same as actual levels in 14 experiments, one level higher in 3 experiments, and two levels higher in 
1 experiment.  These last overestimates could occasion some additional computation that is unnecessary.  
Even so, we view the performance of the modified convergence-divergence checks on the elliptical hole 
problems when analyzed with structured meshes as satisfactory.  This is because they would not see a stress 
analyst accept unacceptable stress results as acceptable, and they do provide conservative yet fairly 
accurate error estimates when stresses are judged converging. 

Using the AMESH command (Reference 15), free meshes are typically relatively easy to implement 
compared to structured meshes.  On the other hand, they do not enjoy the mesh refinement near the peak 
stress location effectively produced by the use of structured meshes with nodes placed at uniform 
increments of elliptical cylindrical coordinates (see Reference 11, Figure 3).  Consequently, we just 
consider free meshes for the two elliptical hole problems with the lower peak stresses ( =TK 5.61, 37.88; 
see Appendix A, Tables 22a, b for results with 4Q elements).  For these two problems, (4) and (6) correctly 
predict convergence in but 2 of 4 experiments.  For these two experiments, error levels predicted by (22) 
and (24) are the same as actual levels.  For the other two experiments, the free meshes used are effectively 
too coarse to capture the peak stress involved ( =TK 37.88).  Accordingly, while a power singularity and 
nonconvergent results are predicted instead of converging results, actual error levels are too high for 



 

stresses to be accepted anyway.  Overall, a satisfactory performance by the modified convergence-
divergence checks. 

Given the high TK involved in most of the elliptical hole problems, it makes sense to consider the use of 
free meshes in conjunction with adaptive mesh refinement.  To this end we employ the macro ADAPT 
(Reference 15), which is based on Zienkiewicz and Zu (References 9, 10), to improve analysis with free 
meshes for =TK 37.88, 105.31 and 296.04.  Further specifics of this FEA with 4Q elements are given in 
Reference 11 (see Appendix A, Table 23 for detailed results so calculated).  For these three problems, (4) 
and (6) correctly predict convergence in 6/6 experiments.  Then if (25) is used in addition to (22) and (24) 
to take advantage of increased convergence rates with adaptive mesh refinement, error levels are predicted 
to be the same as actual in 2/6 experiments, one level higher in the other 4 experiments.  Overall, a 
satisfactory performance by the modified convergence-divergence checks. 

An alternative means of improving resolution of the peak stresses in the ellipse problems is via 
submodeling or rezoning.  This is performed with 4Q and 8Q elements in Reference 11.  Results there have 
(4) and (6) complied with and therefore correctly predicting convergence in 8/8 experiments.  Then 
applying (20), (24) and (25) gives predicted error levels that are the same as actual in 6/8, and one level 
higher for the other 2.  Overall, again satisfactory performance. 

 

 Contact problems 
In practice, contact problems are also a common application of FEA.  This class of problem can present 
two challenges to FEA:  numerical determination of contact extents, and numerical resolution of stress 
concentrations.8  The first can lead to oscillatory convergence and consequent difficulties in assessing 
errors (cf., Table 10).  The second can require extensive mesh refinement for convergence (cf., Table 11). 

A genesic conforming-contact configuration that can include both challenges is the elastic half-space 
indented by a smooth rigid punch with a flat base and rounded edges (Figure 9).  Herein, an FEA has to 
determine the extent of contact outside of the flat width 2w.  If an FEA underestimates this extent, it can 
begin to converge on too high a contact stress, and, conversely, if it overestimates, too low.  As contact 
extents are successively numerically approximated then, convergence of peak contact stresses need not be 
monotonic.  Herein, too, as the edge radius, er , is reduced, high contact stresses occur near the edges of 
contact.  Indeed for er = 0, these stresses are singular (cf., Appendix A, Table 18).   

Exact solutions for the conforming-contact configuration of Figure 9 are available.  For w = 0, we have 
solutions for indentation by a sphere (axisymmetric case) or a cylinder (plane strain case) from Hertz (as 
reported in Reference 34, Appendix 3).  For 0,w ≠ we have solutions for indentation by a strip punch 
(plane strain case) from Steuermann (as reported in Reference 35).  Thus such configurations can 
potentially serve as test problems. 

                                                           
8 For contact with friction, there is the further challenge of numerically policing friction laws:  We do not 
consider this additional challenge here. 



 

 

Figure 9.  Elastic half-space indented by a smooth rigid punch with rounded edges 

 

For FEA, we select both axisymmetric and plane strain cases for = 0,ew r  then five other values of 
0,ew r ≠  one with two different indentation pressures p and hence two different TK .  This selection gives 

rise to a total of eight contact problems with TK  varying from 1.3 to about 30, a range likely to include 
most contact stress concentrations encountered in practice. 

To pose contact problems on finite regions such as R of Figure 9, we first exploit symmetry to provide 
conditions on the z axis.  Next, we could attempt to draw on internal stresses in the half-space to provide 
counterbalancing tractions on the remainder of the interior boundary of R.  For Hertzian contact of a 
cylinder, simple expressions for such stresses are available from McEwen (as reported in Reference 34, 
Section 4.2), and we use them to provide tractions.  For the other contact problems, no such simple 
expressions would appear to be available.  For these problems, therefore, we employ conditions on the 
other interior boundaries of R that are asymptotically correct in a St. Venant sense.  We do this by drawing 
on stresses from known exact solutions for surface forces/tractions acting on an elastic half-space.  We use 
these stresses to apply tractions on the interior of R that counterbalance the force exerted by the indenter.   
We start with R of extent say l deep and wide, then successively double l until negligible differences occur 
in the FEA of the sought-after contact stress. 

For our eight contact problems, we use predominantly 4Q host elements in conjunction with surface-to-
surface contact elements.  Given ½c ≈ at the edges of contact, we do not expect 8Q elements to offer any 
significant improvement in convergence, though we check this expectation out on one contact problem.  
We use the default contact algorithm (the augmented Lagrangian algorithm, Reference 15) for the Hertzian 
contact problems, the contact algorithm with a Lagrangian multiplier on the contact normal and penalty on 
tangent (Reference 15) for the Steuermann contact problems because it performs better on these problems 
(see Reference 20).  The rigid punches are simulated with a Young’s modulus of 610 E  and the same host 
elements as the half-space.  Initial meshes are uniform for Hertzian contact but have some local refinement 
near the edge of contact for Steuermann contact.  Subsequent meshes all have host element numbers as in 
(52):  thus mesh refinement as in (3) with = 2.λ   A total of 29 meshes are run that together realize 13 



 

numerical experiments.  In what follows, we first present results for one Hertzian and two Steuermann 
problems, then merely summarize the performance of the modified convergence-divergence checks re 
convergence assessment for the other FEA (companion detailed results are set out in Appendix B, Tables 
24, 25).   

For the one axisymmetric Hertzian problem, results for the peak, normalized, contact stress cσ are included 
in Table 12, with cσ being defined as 

 ( )= - at = = 0, = 0 = 1½c z x r z pσ σ  (73) 

where x, z are as in Figure 9, the radial coordinate r for the axisymmetric problem is taken to coincide with 
x, and the exact value is from Reference 34, Appendix 3.  The far-field boundary conditions employ the 
Boussinesq solution for a point-load on a half-space (see, e.g., Reference 34, Section 3.2) with extents of R 
being eight times the contact radius.  The FEA starts with a uniform mesh of 4Q elements for the half-space 
with 1 = 256N  (see Reference 20 for details). 

Table 12: Convergence assessment for Hertzian spherical contact 
 

m 

 

cσ  

 

cσ∆  

 

c 

 

ê  

 

e  

 

1  

 

1.1992 

 

 

0.1938 

 

 

  

 

 

2 1.3930  

0.0841 

1.20   

 

3 1.4771   0.06 0.02 

 

For the three-mesh sequence in Table 12, the stress increments have (4) and (6) being complied with and 
converging stresses correctly predicted.  Thereafter using (22) because c > 1, error is predicted to be 
satisfactory when actual error level is good, a conservative result. 

Similar performance of the modified convergence-divergence checks occurs for cσ  in the other Hertzian 
contact problem (plane strain cylinder).  For the two three-mesh sequences for cσ  available from Appendix 
B, Table 24, (4) and (6) are complied with and correctly predict converging stresses (despite one instance 
of oscillatory actual errors).  Error levels predicted for cσ  agree with actual, both being excellent (actual 
errors being slightly higher for 8Q elements than 4Q).  All told, a conservative and quite satisfactory 
performance of the modified convergence-divergence checks for cσ  in Hertzian contact. 

On the other hand, performance for the peak, horizontal, contact stress in the cylindrical Hertzian problem 
is not so good.  While convergence is correctly predicted by (4) and (6) for the two three-mesh sequences 
in Table 24, errors from (22) and (24) are underestimates.  Errors are predicted to attain excellent levels 
when in fact they are but good (actual errors being very slightly higher for 8Q elements than 4Q).  This 
represents a nonconservative failure of the modified convergence-divergence checks, albeit not a gross 
failure.  It is caused by c of (20) significantly overestimating actual convergence rates (recall discussion 
following (25)).  Here, as elsewhere, FEA can have difficulty determining this contact stress component, 
and actual convergence rates can be low ( 0.1≈ ). 

For two Steuermann problems, results for the peak, normalized, contact stress cσ  are included in Table 13, 
with cσ  now being defined as 

 ( )= - max imum value on > 0, = 0c z x z pσ σ  (74) 



 

where coordinates are as in Figure 9.  The far-field boundary conditions employ the Michell solution for a 
uniform pressure over a strip on a half-space (see, e.g., Reference 34, Section 2.5).  One of these problems 
has gently rounded edges ( )= 7 9ew r , the other sharply rounded ( )= 97 3 .ew r  Corresponding exact 
solutions for cσ of (74) are developed by Steuermann and may be obtained from Reference 35.  These 
solutions locate cσ  of (74) near the edge of contact for both problems.  They depend not only on the degree 
of roundness but also on load level and Poisson’s ratio.  For the results in Table 13, = 0.42.ν  Then 
corresponding exact values of cσ  for respective edge roundness and load levels are: 

 
= 7 9, 1 1243, = 6.7032
= 97 3, 1 2718, = 29.908

e c

e c

w r p E =
w r p E =

σ
σ

 (75) 

The FEA for these peak cσ  starts with a nonuniform mesh of 4Q elements with 1 = 2000N  for both 
problems (see Reference 20, Figure 3(c), for an example of the local mesh refinement used near the edge of 
contact).  Results so produced are included in Table 13 distinguished by ew r  ratios in parentheses. 

For the two three-mesh sequences for ew r = 7/9 in Table 13, the stress increments have (4) and (6) being 
complied with and converging stresses correctly predicted.  Then (22) furnishes the successive error 
estimates 

 ˆ = 0.02, 0.005e  (76) 

In fact  

 = 0.008, 0.003e  (77) 

Hence initially a conservative prediction of a good error level when in fact the error level is excellent, and 
ultimately a prediction of excellent when so.  For this problem, then, a satisfactory performance of the 
modified convergence-divergence checks. 

For the first three-mesh sequence for ew r = 97/3, (6) is complied with but (4) is not so that divergence is 
predicted.  Neither (12) nor (14) is met, so nonconvergent results are predicted rather than divergence due 
to a stress singularity.  For the second three-mesh sequence, (6) is not complied with and the modified 
convergence-divergence checks are not applicable.  In fact, stresses are converging on meshes 1, 2, 
diverging on meshes 2, 3 because of oscillatory errors, and ultimately converging on meshes 3, 4 to within 

Table 13: Convergence assessment for Steuermann contact 
 

m 

 

cσ (7/9) 

 

cσ∆  

 

cσ (97/3) 

 

cσ∆  

 

1  

 

6.3435 

 

 

0.1714 

 

27.617 

 

 

 

1.320 

2 6.5149  

0.1314 

28.937  

1.980 

3 6.6463  

0.0364 

30.917  

-1.029 

4 6.6827  29.888  

 

an error of 0.07%.  This is an example of the nonmonotonic convergence that can occur in contact 
problems (in our experience, about one time in four).  As earlier, this causes difficulties for the modified 
convergence-divergence checks (cf., Table 10) and they fail to discern that stresses here have actually 
converged to within an excellent error level. 



 

Similar performance of the modified convergence-divergence checks to that for cσ (7/9) of Table 13 occurs 
for cσ  in the other Steuermann problems.  For the four three-mesh sequences for cσ  available from 
Appendix B, Table 25, (4) and (6) are complied with and correctly predict converging stresses (actual 
convergence is monotonic in this table).  Error levels predicted agree with actual, all being good.  Overall, 
then, a conservative and quite satisfactory performance of the modified convergence-divergence checks for 

cσ  in Steuermann contact when convergence is monotonic. 

 
Concluding remarks 
Determining whether key elastic stresses computed via FEA are diverging or converging is essential for 
their meaningful use in engineering practice.  If converging, the further determination of the degree to 
which they have converged is a prerequisite to their successful use.  To these ends and in light of the results 
found in this paper, we recommend the adoption of the convergence-divergence checks summarized in 
what follows. 

For these checks, at the outset the FEA should be carried out on at least three meshes that are formed by 
successive, systematic, scaled refinement.  That is, if h is a linear measure of representative element size in 
the first coarse mesh, subsequent medium and fine meshes should have element sizes h λ and 2 ,h λ  
where λ is the scale factor.  As a minimum, λ should be no less than 3/2; typically 2.λ ≈  On these three 
meshes, an FEA calculation of the key stress σ is made (at a common location), yielding ,  and c m fσ σ σ , 
respectively.  Thereafter, increments in σ are determined in accordance with  

 = - , = -c m c m f mσ σ σ σ σ σ∆ ∆  (78) 

These two increments must not be of opposite signs for the checks to be applicable:  If they are, further 
refinement is required until they are not. 

Given  0,c mσ σ∆ ∆ ≥ three cases can be distinguished: 

 ( )    < ...divergingc mi σ σ∆ ∆  (79) 

 ( )     ...divergingc mii σ σ∆ ≈ ∆  (80) 

 ( )    > ...convergingc miii σ σ∆ ∆  (81) 

We expand on these three cases in turn. 

For Case (i), stresses may be diverging because of the presence of a power singularity with 
( )-=  as 0.O r rγσ →  To check for this possibility, successive estimates of the singularity exponent γ  can 

be made via 

 ( ) ( )ˆ = ln ln , = ln ln  m c f mγ σ σ λ γ σ σ λ     %  (82) 

Then a power singularity is judged to be present when the magnitude of the difference between these two 
exponent estimates is less than 10% of their mean value.  If so, stress values are physically meaningless and 
their further FEA is useless.  If not, stresses may have a log singularity (see next case), or simply not yet be 
converging/have converged because meshes are too coarse.  In this last instance, further FEA can yield 
physically reasonable results. 

For Case (ii), the approximate equality holds whenever the magnitude of any change between  
 and c mσ σ∆ ∆  is less than 10% of their mean value.  Thus Case (ii) includes instances in strict 

compliance with (79) or (81).  When Case (ii) holds, a log singularity is judged to be present.  That is, 
stress values which are physically meaningless with ( )= ln  as 0.O r rσ →  

For Case (iii), given Case (ii) does not hold, stresses are judged to be converging.  Then an assessment 
needs to be made of the degree to which stresses have converged. 



 

To assess the degree that stresses have converged, first an estimate of the effective convergence rate c is 
made via 

 ( ) ( )= ln ln    > 0c mc cσ σ λ∆ ∆    (83) 

Then if 2,cλ ≥ the relative absolute error in fσ is estimated by 

 ( )ˆ = 0m f fe    σ σ σ∆ ≠  (84) 

If not and < 2,cλ the error in fσ is estimated by 

 ( )ˆ= -1ce e λ%  (85) 

Here, when the larger of  ̂ande  e%  is less than 0.1, the FEA is judged to have converged to a satisfactory 
level, when less than 0.05 to a good level, and when less than 0.01 to an excellent level. Certainly, though, 
other numerical values for these levels could be set.9  The foregoing summarizes the essential elements of 
the recommended convergence-divergence checks for divergence detection and convergence assessment.  
The main body of the paper does contain some improvements (see discussion surrounding (15) and 
following (25)). 

The analogues of these convergence-divergence checks are applied to three series that diverge, three that 
converge, and one that can do either.  They correctly predict divergence for the three divergent series, 
convergence for the three convergent series, and are conservative as to when convergence occurs for the 
last series.  Thereafter for the three convergent series, they accurately estimate errors for two and 
overestimate the error for the third. 

For 26 numerical experiments on 14 trial problems with power singularities, (79) and (80) detect 
divergence for 96%.  Then using (82), power singularities are predicted for 92% of this 96%.  The one 
experiment erroneously judged to have converging stresses involves a weak singularity ( )= 0.091γ .  
Ultimately, though, these stresses are not judged converged via (83)-(85), and so would not be accepted, as 
should be the case. 

For 21 numerical experiments on 5 trial problems with log singularities, (79) and (80) detect divergence for 
90%.  Then using just (80), log singularities are predicted for but 37% of this 90%.  This low success rate 
of predicting actual log singularities may be attributed to the weak nature of these singularities that makes 
them easily masked.  The two experiments erroneously judged to have converging stresses are ultimately 
judged by the convergence-divergence checks to lead to unacceptable stresses, as should be the case.10 

For 103 numerical experiments on 18 test problems with nonsingular stresses, (81), with (80) not holding, 
predicts convergence for 88%.  For these experiments wherein stresses are judged converging, (83), (84) 
and (85) estimate errors to be two levels above actual in 2%, one level above in 18%, the same in 77%, and 
one level below in 3%.  For the other 12 experiments, about half cannot be assessed because of oscillatory 
errors, while the other half are for stresses on coarse meshes that  have yet to converge anyway. 

In sum, the foregoing experiments demonstrate that the recommended convergence-divergence checks can 
perform satisfactorily in 2D stress analysis with finite elements, and so would seem likely to be satisfactory 
in practice for such analysis.  Further study is needed to see if this is so in 3D stress analysis. 

                                                           
9 If instead 0.05, 0.01 and 0.001 are used for satisfactory, good and excellent, performance of the 
convergence-divergence checks on the trial and test problems is essentially unchanged. 
10 For all singular problems, it is helpful to have asymptotic identifications of singular stresses to confirm 
FEA suspicions of divergence, and thereby avoid further futile analysis:  This is particularly so for log 
singularities wherein divergence can be hard to detect numerically.  Reference 4 provides a recent review 
of such asymptotics. 



 

The same cannot be said of the alternative checks considered here:  the linearly-increasing-mesh-sequence 
check and the two-mesh check.  These are demonstrated here to be unreliable when it comes to detecting 
divergence and singular stresses, and so not good practice. 
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Appendix A:  Singular trial problems 
Here we furnish further FEA results for peak stresses in the singular trial problems.  We start by giving 
these stresses when a power singularity is present, then give these stresses when a logarithmic singularity is 
present. 

For the ‘bimaterial’ plate with a right-angled reentrant corner under tension (Figure 3, = 90ºφ ), we treat 
two other moduli ratios: + - = 1,4.E E   The first of these is actually a single-material plate:  We include 
results for this case because they enable comparison of the free-mesh FEA used here with a subsequent 
structured-mesh FEA.  Singularity exponents for these two ratios are as in Table 14 wherein 'γ is the 
exponent for the second weaker singularity which is also active when + - = 4E E  (from Williams, 
Reference 27, and Bogy, Reference 25, with = ¼ν ).  Details of the FEA are given in Reference 17.  
Resulting normalized stresses, defined as in (48), are set out in the second and third columns of Table 15.  
In this table, the mesh number m is as in (49), and the numbers in parentheses are the moduli ratios. 

Also included in Table 15 are peak stress results for a further butt joint under tension (Figure 4) when 
+ - = 20.E E  The singularity exponent for this configuration is = 0.325γ  (from Bogy, Reference 26, with 
= 9 20ν ).  The FEA is as described in the main body of the paper.  Resulting stresses, defined as in (53), 

are given in the last column of Table 15. 

Table 14:  Singularity exponents for bimaterial corners under tension 
 

+ -E E  

 
γ  

 

΄γ  

 

1  

 

0.456  

 

- 

4  0.427 0.140 

 

Table 15: maxσ  for bimaterial corners and a butt joint 
 

m 

 

( )max 1σ  

 

( )max 4σ  

 

( )max 20σ  

 

1  

 

10.28 

 

9.78 

 

1.044 

2 11.88 11.27 - 

3 13.10 12.36 - 

4 14.00 13.15 1.330 

16 19.11 17.67 1.692 

64 - - 2.138 

 

For a homogeneous elastic plate with a right-angled reentrant corner (Figure 3 with + -=E E and = 90ºφ ), 
the singularity exponent is as in Table 14 for tension ( )0σ , while = 1 3γ  for antiplane shear ( aτ ; 
Reference 4, Section 4.1) and γ is as in (55) for in-plane shear ( 0τ ).  For other corners ( =φ 45º, 135º), 
respective singularity exponents for 0 0,  and aσ τ τ are set out in Table 16 (from Williams, Reference 27, and 
Reference 4, Section 4.1).  Details of the FEA for all three corners are given in References 18, 19.  
Resulting normalized stresses, defined as in (48) and (56), are set out for in-plane tension in the second, 
fourth, and fifth columns of Table 17a, while those for in-plane shear are set out in the third column.  



 

Resulting normalized shear stresses, defined analogously to (56), are set out in Table 17b for antiplane 
shear.  Throughout Table 17, m is as in (52) and numbers in parentheses are φ . 

Table 16:  Singularity exponents for reentrant corners 
 

φ  

 

( )0γ σ  

 

( )aγ τ  

 

( )0γ τ  

 

45º 

 

0.495 

 

0.429 

 

0.340 

135º 0.326 0.200 - 

 

Table 17a:  max max,σ τ  for reentrant corners under in-plane tension, shear 
 

m 

 

( )max 45ºσ  

 

( )max 45°τ  

 

( )max 90ºσ  

 

( )max 135ºσ  

 

1 

 

73.00 

 

10.48 

 

17.77 

 

5.258 

2 110.8 13.73 25.39 6.690 

3 161.4 17.63 35.46 8.422 

4 231.3 22.41 49.02 10.56 

 

Table 17b:  max
aτ  for reentrant corners in antiplane shear 

 

m 

 

( )max 45ºaτ  

 

( )max 90ºaτ  

 

( )max 135ºaτ  

 

1 

 

2.250 

 

1.730 

 

1.364 

2 3.244 2.212 1.570 

3 4.516 2.804 1.805 

 

For flat-ended, rigid, smooth punches indenting an elastic half-space (Figure 9, = 0er ), inverse-square-root 
stress singularities occur at the edges of contact for both the strip punch (plane strain case; see, e.g., 
Reference 34, Section 2.8) and the right-circular cylindrical punch (axisymmetric case; see, e.g., Reference 
34, Section 3.4).  Details of the FEA for both flat-ended punches are given in Reference 20.  Resulting 
normal contact stresses at the edges of contact, normalized by the average pressure and multiplied by –1, 
are set out in Tables 18a and 18b for the plane strain and axisymmetric cases, respectively.  In Table 18, m 
is as in (52) and the parentheses contain designations of the host element used. 



 

Table 18a: maxσ  for rigid, flat-ended, strip punch 
 

m 

 

maxσ (4Q) 

 

maxσ (8Q) 

 

1 

 

2.132 

 

1.736 

2 3.016 2.437 

3 4.266 3.434 

 

Table 18b: maxσ  for rigid, flat-ended, cylindrical punch 
 

m 

 

maxσ (4Q) 

 

maxσ (8Q) 

 

1 

 

1.641 

 

1.321 

2 2.347 1.884 

3 3.338 2.678 

 

Turning to trial problems with log singularities, Table 19 gives some results for log singularities induced by 
discontinuities in displacement derivatives in boundary conditions. In this table, m is as in (52) and 
parentheses contain nodal location designations.  Details of these locations and the FEA producing these 
results may be found in Reference 31. 

Table 19a: Boundary stresses with displacement shape function conditions ( = 5.6TK ) 
 

m 

 

( )N1xσ  

 

( )N2xσ  

 

( )N1yσ  

 

( )N2yσ  

 

1 

 

1.245 

 

1.0550 

 

5.483 

 

5.678 

2 1.198 1.0528 5.482 5.530 

3 1.142 1.0495 5.472 5.398 

4 1.081 1.0481 5.457 5.271 

 



 

Table 19b: Boundary stresses with displacement shape function conditions ( = 37.8TK ) 
 

m 

 

( )N1´xσ  

 

( )N2'xσ  

 

( )N1'yσ  

 

( )N2'yσ  

 

1 

 

20.57 

 

3.683 

 

38.17 

 

28.66 

2 18.29 3.284 37.57 26.74 

3 16.19 2.767 36.81 24.98 

 

Appendix B:  Nonsingular test problems 
Here we furnish further FEA results for selected key stresses in nonsingular test problems.  We start by 
giving further stresses for polynomial problems, then give hoop stresses for thick-wall pressure vessels, 
then give additional peak stresses for elastic plates with elliptical holes, and thereafter close by giving 
further Hertzian and Steuermann contact stresses.  Throughout the tables presenting these results, the mesh 
number m is as in (52) unless otherwise stated:  thus mesh refinement as in (3) with = 2.λ  

For the first-order and second-order polynomial problems stemming from (64) on the elastic plate of Figure 
2, FEA stresses for 4Q elements are given in Table 20a.  For second-order and third-order problems, 
stresses for 8Q elements are given in Table 20b (as expected, 8Q elements solve the first-order problem 
exactly and so results are omitted).  For both element types, 1 = 8.N   In these tables, the normalized 
stresses are defined by: 

 

( )
( )
( )
( )
( )

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

= at = 2 , = 0 = 2

= - at = 0, = = 1

= - at = 0, = = 2

' = at = 2 , = 0 = 4

= at = 0, = 1 = 1

x x

xy xy

x x

x x

y y

x l y

x y l

x y l

x l y

x y

σ σ σ

τ τ σ

σ σ σ

σ σ σ

σ σ σ

 

and 3 3,  are , x xy x xyσ τ σ τ of  (65); here coordinates are as in Figure 2, and exact values follow from (64).  In 
these definitions, the added numerical subscripts distinguish the order of problem. 

Table 20a: Stress results for first-order and second-order polynomial problems (4Q) 
 

m 

 

1xσ  

 

1xyτ  

 

2xσ  

 

2'xσ  

 

2yσ  

 

1  

 

1.7471 

 

0.7486 

 

2.0006 

 

3.1273 

 

0.6480 

2 1.8746 0.8747 2.0319 3.5350 0.7866 

3 1.9374 0.9375 2.0236 3.7590 0.8841 

4 1.9688 0.9687 2.0137 3.8773 0.9398 

5 1.9843 0.9844 2.0074 3.9381 0.9693 

 

 



 

Table 20b: Stress results for second-order and third-order polynomial problems (8Q) 
 

m 

 

2xσ  

 

2'xσ  

 

2yσ  

 

3'xσ  

 

3xyτ  

 

1  

 

2.0417 

 

3.9583 

 

0.9583 

 

2.5133 

 

7.7457 

2 2.0105 3.9895 0.9896 1.3999 7.9390 

3 2.0025 3.9975 0.9974 1.1006 7.9847 

4 2.0007 3.9993 0.9994 1.0251 7.9962 

5 2.0002 3.9998 0.9998 1.0063 7.9991 

 

For the thick-wall pressure vessel problems (Figure 7), exact solutions for normalized hoop stresses, θσ , 
induced by an internal pressure p and at the outer radius or and inner radius ir , are (see, e.g. Reference 32, 
Section 28): 

 
( ) ( ) ( )
( ) ( ) ( )

2= at = = 2 -1

    = at = = +1

o o o i

i i o

r r r p r r

r r r p r

θ θ

θ θ θ

σ σ

σ σ σ

 
   

Two pressure vessels are analyzed with FEA in Reference 33:  a thick-wall vessel with 

 ( ) ( ) ( )1 11
= 53 39, = 2.3618, = 3.3618o i o ir r r rθ θσ σ  

and a vessel with a relatively thin wall with  

 ( ) ( ) ( )2 22
= 27 26, = 25.509, = 26.509o i o ir r r rθ θσ σ  

Now numerical subscripts distinguish the radii ratio.  Corresponding FEA results are set out in Table 21. 

Table 21: Hoop stresses for thick-wall pressure vessels 
 

m 

 

( )1 orθσ  

 

( )1 irθσ  

 

( )2 orθσ  

 

( )2 irθσ  

 

1 

 

2.3600 

 

3.3662 

 

25.372 

 

26.628 

2 2.3611 3.3641 25.476 26.540 

3 2.3619 3.3634 25.496 26.522 

 

For plates with elliptical holes with varying aspect ratios under tension (Figure 8), Table 22 gives 
max max= , TKσ σ  as in (72), from FEA with structured 4Q and 8Q meshes, and a free mesh of four-node 

quadrilaterals distinguished as 4Q' in Tables 22a, b.  Also in Table 22b, max'σ distinguishes maxσ for TK = 
105.31.  Details of the FEA producing these results may be found in Reference 11. 



 

Table 22a: maxσ  for plate with elliptical hole under tension ( )= 5.61TK  
 

m 

 

( )max 4Qσ  

 

( )max 4Q'σ  

 

( )max 8Qσ  

 

1 

 

5.5550 

 

5.4459 

 

5.6329 

2 5.5955 5.5640 5.6159 

3 5.6063 5.5978 5.6113 

 

Table 22b: maxσ  for plate with elliptical holes under tension ( = 37.88, 105.31TK ) 
 

m 

 

( )max 4Qσ  

 

( )max 4Q'σ  

 

( )max 8Qσ  

 

( )max' 8Qσ  

 

1 

 

27.533 

 

6.5387 

 

29.607 

 

47.991 

2 33.534 9.9665 35.476 70.802 

3 36.447 15.835 37.472 91.480 

4 37.469 23.652 37.788 102.18 

5 37.770 30.680 37.847 104.70 

 

Table 22c: maxσ  for plate with elliptical hole under tension ( )= 296.04TK  
 

m 

 

( )max 4Qσ  

 

( )max 8Qσ  

 

1 

 

53.826 

 

60.303 

2 94.715 105.86 

3 152.27 166.11 

4 215.02 230.04 

5 261.84 275.92 

6 284.71 292.11 

7 292.78 295.05 

8 295.17 - 

 

For plates with elliptical holes with varying aspect ratios under tension, Table 23 gives maxσ from FEA with 
free meshes of four-node quadrilaterals that are adaptively refined, denoted by 4Qa therein.  The number of 
elements in initial coarse grids, N1, given in parentheses, is set by the scale factor implicit in N2, N3 for two 
refined grids.  Hence  

 2
1 2 3=N N N  



 

This leads to effective scale factors of λ = 1.72, 1.67 in Table 23a, λ = 1.77, 2.14 in Table 23b, and λ = 
2.07, 1.77 in Table 23c.  Thus scale factors all in excess of 1.5, the minimum value.  Corresponding 

maxσ for N1, given in parentheses, are estimated simply by linear interpolation.  The results needed for this 
interpolation, as well as details of the FEA producing them, may be found in Reference 11. 

 

Table 23a: maxσ  for plate with elliptical hole under tension ( )= 37.88, 4QaTK  
 

N 

 

maxσ  

 

N 

 

maxσ  

 

(660) 

 

(4.5) 

 

(2,096) 

 

(31.6) 

1,961 31.4 5,830 37.3 

5,830 37.3 16,214 37.8 

 

Table 23b: maxσ  for plate with elliptical hole under tension ( )= 105.31, 4QaTK  
 

N 

 

maxσ  

 

N 

 

maxσ  

 

(1,403) 

 

(10.9) 

 

(3,047) 

 

(46.4) 

4,420 68.6 13,920 98.9 

13,920 98.9 63,585 104.9 

 

Table 23c: maxσ  for plate with elliptical hole under tension ( )= 296.04, 4QaTK  
 

N 

 

maxσ  

 

N 

 

maxσ  

 

(11,967) 

 

(128.9) 

 

(70,073) 

 

(250.9) 

51,128 245.8 218,448 290.6 

218,448 290.6 681,000 295.2 

 

For Hertzian cylindrical contact (Figure 9, = 0w ), Table 24 gives peak normalized stresses from FEA with 
uniform 4Q and 8Q meshes and N1 = 256.  Details of the FEA producing these results may be found in 
Reference 20.  In Table 24, the normalized stresses are defined by: 

 
( )
( )

= - at = 0, = 0 = 4

= - at = 0, = 0 = 4
c z

h x

x z p

x z p

σ σ π

σ σ π
 

where coordinates are as in Figure 9 and exact values are from Reference 34, Section 4.2(c). 

 

 



 

Table 24: Contact stresses for Hertzian cylindrical contact 
 

m 

 

cσ (4Q) 

 

cσ (8Q) 

 

hσ (4Q) 

 

hσ (8Q) 

 

1 

 

1.2628 

 

1.2961 

 

1.2119 

 

1.2188 

2 1.2704 1.2809 1.2214 1.2216 

3 1.2737 1.2761 1.2241 1.2237 

 

For Steuermann contact (Figure 9), Table 25 gives peak, normalized, contact stresses, cσ  of (74), for three 
different degrees of edge roundness (w/re in parentheses), with two load levels for the least round (w/re = 
7).  Poisson’s ratio for results in the second through fourth columns is ¼; Poisson’s ratio for the fifth 
column is 0.42.  These are from FEA with nonuniform 4Q meshes.  Initial element numbers are N1 = 8000, 
16,000, 17,000 and 2000 for the second, third, fourth and fifth column results of Table 25, respectively.  
Details of the FEA producing the results in second through fourth column may be found in Reference 20. 
Corresponding exact solutions from Steuermann (as reported in Reference 35) are: 

 

= 1, = 1 1000, = 9.9773
= 3, = 1 1000, = 10.957
= 7, = 1 1000, = 13.175
= 7, = 1 2455, ' = 17.372

e c

e c

e c

e c

w r p E
w r p E
w r p E
w r p E

σ
σ
σ
σ

 

Table 25: Contact stresses for Steuermann contact 
 

m 

 

cσ (1) 

 

cσ (3) 

 

cσ (7) 

 
'
cσ (7) 

 

1 

 

9.3506 

 

9.9830 

 

11.834 

 

13.454 

2 9.7120 10.618 12.560 16.195 

3 9.8500 10.832 12.707 16.947 
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