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Discretisation 

Consider the temperature distribution along the one-dimensional fin in Fig.1. 

 

Figure 1: Depiction of a piecewise approximation to a continuous function 

A one-dimensional continuous temperature distribution with an infinite number of 
unknowns is shown in (a). The fin is discretised in (b) – i.e. divided into 4 subdomains (or 
elements). The nodes are numbered consecutively from left to right, as are the elements. 
The elements are first order elements; the interpolation scheme between the nodes is 
therefore linear. Note that there are only 5 nodes for this system, since the internal nodes 
are shared between the elements. Since we are only solving for temperature, there are only 
5 degrees of freedom in this model of the continuous system. It should be clear that a better 
approximation for T(x) would be obtained if the number of elements was increased (i.e. if 
the element lengths were reduced). It is also apparent that the nodes should be placed 
closer together in regions where the temperature (or any other unknown solution) changes 
rapidly. It is useful also to place a node wherever a step change in temperature is expected 
and where a numerical value of the temperature is needed. It is good practice to continue to 
increase the number of nodes until a converged solution is reached. 

In (c), the fin has been divided into two subdomains – elements 1 and 2. However, in this 
instance we have chosen to use a second order (quadratic) element. These elements contain 
‘midside’ nodes as shown, and the interpolation between the nodes is quadratic which 
permits a much closer approximation to the real system. For this model system there are 
still just 5 degrees of freedom. However, the analysis takes longer for (c) than it does for (b) 
because the quadratic interpolation (which calculates the temperature at locations between 
the nodes) is more demanding than the corresponding linear case.1 

(There is often a trade-off between a high number of first order elements requiring little 
computation and a smaller number of second order elements requiring more heavy 
computation to be made, which affects both the analysis time and the solution accuracy. 
The choice depends to a large extent on the problem being solved.) 
                                                           
1 For a system with only 5 degrees of freedom the difference would be imperceptible using modern desktop 
machines. This would not be the case for large systems containing hundreds of thousands of degrees of 
freedom. 
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Shape Functions 

We can use (for instance) the direct stiffness method to compute degrees of freedom at the 
element nodes. However, we are also interested in the value of the solution at positions 
inside the element. To calculate values at positions other than the nodes we interpolate 
between the nodes using shape functions.  

A one-dimensional element with length L is shown in Fig.2. It has two nodes, one at each 
end, denoted i and j, and known nodal temperatures Ti and Tj. We can deduce 
automatically that the element is first order (linear) since it contains no ‘midside’ nodes. 

 

Figure 2: One dimensional linear element with temperature degrees of freedom 

We need to derive a function to compute values of the temperature at locations between 
the nodes. This interpolation function is called the shape function. We demonstrate its 
derivation for a 1-dimensional linear element here. Note that, for linear elements, the 
polynomial inerpolation function is first order. If the element was second order, the 
polynomial function would be second order (quadratic), and so on. 

Since the element is first order, the temperature varies linearly between the nodes and the 
equation for T is: 

𝑇(𝑥) = 𝑎 + 𝑏𝑥               (1) 
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We can therefore write: 

𝑇𝑖 = 𝑎 + 𝑏𝑋𝑖               (2) 

𝑇𝑗 = 𝑎 + 𝑏𝑋𝑗               (3) 

which are simultaneous. To determine the coefficients 𝑎 and 𝑏: 

𝑇𝑖−𝑎
𝑋𝑖

= 𝑏                (4) 

𝑇𝑗−𝑎
𝑋𝑗

= 𝑏               (5) 

𝑇𝑖−𝑎
𝑋𝑖

=  𝑇𝑗−𝑎
𝑋𝑗

               (6) 

(𝑇𝑖 − 𝑎)𝑋𝑗 =  �𝑇𝑗 − 𝑎�𝑋𝑖              (7) 

𝑇𝑖𝑋𝑗 − 𝑎𝑋𝑗 =  𝑇𝑗𝑋𝑖 − 𝑎𝑋𝑖              (8) 

𝑇𝑖𝑋𝑗 − 𝑇𝑗𝑋𝑖 =  𝑎�𝑋𝑗 − 𝑋𝑖�              (9) 

𝑇𝑖𝑋𝑗−𝑇𝑗𝑋𝑖
�𝑋𝑗−𝑋𝑖�

=  𝑎                         (10) 

𝑇𝑖𝑋𝑗−𝑇𝑗𝑋𝑖
𝐿

=  𝑎                         (11) 

and 

𝑇𝑖 − 𝑏𝑋𝑖 = 𝑎                         (12) 

𝑇𝑗 − 𝑏𝑋𝑗 = 𝑎                         (13) 

𝑇𝑖 − 𝑏𝑋𝑖 = 𝑇𝑗 − 𝑏𝑋𝑗                         (14) 

𝑏𝑋𝑗 − 𝑏𝑋𝑖 = 𝑇𝑗 − 𝑇𝑖                         (15) 

𝑏�𝑋𝑗 − 𝑋𝑖� = 𝑇𝑗 − 𝑇𝑖                        (16) 

𝑏 = 
𝑇𝑗−𝑇𝑖
�𝑋𝑗−𝑋𝑖�

                                       (17) 

𝑏 = 
𝑇𝑗−𝑇𝑖
𝐿

                                       (18) 

Substitution of Eqns.11 and 18 into Eqn.1 yields: 

𝑇(𝑥) = 𝑇𝑖𝑋𝑗−𝑇𝑗𝑋𝑖
𝐿

+ �𝑇𝑗−𝑇𝑖
𝐿
� 𝑥                       (19) 

𝑇(𝑥) = 𝑇𝑖𝑋𝑗−𝑇𝑗𝑋𝑖
𝐿

+ 𝑇𝑗𝑥−𝑇𝑖𝑥
𝐿

                                  (20) 
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𝑇(𝑥) = 𝑇𝑖𝑋𝑗
𝐿
− 𝑇𝑗𝑋𝑖

𝐿
+ 𝑇𝑗𝑥

𝐿
− 𝑇𝑖𝑥

𝐿
                       (21) 

𝑇(𝑥) = 𝑇𝑖𝑋𝑗
𝐿
− 𝑇𝑖𝑥

𝐿
 + 𝑇𝑗𝑥

𝐿
− 𝑇𝑗𝑋𝑖

𝐿
                    (22) 

𝑇(𝑥) = 𝑇𝑖 �
𝑋𝑗−𝑥
𝐿
� + 𝑇𝑗 �

𝑥−𝑋𝑖
𝐿
�                                 (23) 

It should be clear from Eqn.23 that the nodal temperature values are multiplied by linear 
functions of 𝑥 – the shape functions. The functions are denoted by 𝑆 with a subscript to 
indicate the node with which a specific shape function is associated. In the case presented: 

𝑆𝑖 =  �𝑋𝑗−𝑥
𝐿
�                         (24) 

𝑆𝑗 =  �𝑥−𝑋𝑖
𝐿
�                       (25) 

And Eqn.23 becomes 

𝑇(𝑥) = 𝑆𝑖𝑇𝑖 + 𝑆𝑗𝑇𝑗                                              (26) 

In matrix form 

𝑇𝑥𝑒 = [𝑆𝑖 𝑆𝑗] �
𝑇𝑖
𝑇𝑗
�                         (27) 

For the case shown in Fig.3, calculate 𝑇at 𝑥 = 3.3 

 

Figure 3: 1-dimensional linear element with known nodal temperatures and positions 

𝑇(𝑥 = 3.3) = 50.6 

𝑇(𝑥 = 3.3) = 𝑇𝑖 �
𝑋𝑗−𝑥
𝐿
�+ 𝑇𝑗 �

𝑥−𝑋𝑖
𝐿
�  

𝑇(𝑥 = 3.3) = 50 �5−3.3
2
�+ 54 �3.3−3

2
�  

 

Draw linear shape functions 
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From inspection of Eqn.26 we can deduce that each shape function has a value of 1 at its 
own node and a value of zero at the other nodes. The sum of the shape functions sums to 
one. The shape functions are also first order, just as the original polynomial was. The shape 
functions would have been quadratic if the original polynomial has been quadratic.  

A continuous, piecewise smooth equation for the one dimensional fin first shown in Fig.1 
can be constructed by connecting the linear element equations. We know that the 
temperature at any point in any element can be found from the nodal temperatures 𝑇𝑖 and 
the shape functions, 𝑆𝑖. For the following system: 

𝑇𝑥𝑒 = 𝑆𝑖𝑇𝑖 + 𝑆𝑗𝑇𝑗 𝑋𝑖 ≤ 𝑥 ≤ 𝑋𝑗                                              (28) 

 

𝑇𝑥1 = 𝑆11𝑇1 + 𝑆21𝑇2           𝑆11 = 𝑋2−𝑥
𝑋2−𝑋1

            𝑆21 = 𝑥−𝑋1
𝑋2−𝑋1

            𝑋1 ≤ 𝑥 ≤ 𝑋2                 (29) 

𝑇𝑥2 = 𝑆22𝑇2 + 𝑆32𝑇3           𝑆22 = 𝑋3−𝑥
𝑋3−𝑋2

            𝑆32 = 𝑥−𝑋2
𝑋3−𝑋2

           𝑋2 ≤ 𝑥 ≤ 𝑋3                 (30) 

𝑇𝑥3 = 𝑆33𝑇3 + 𝑆43𝑇4           𝑆33 = 𝑋4−𝑥
𝑋4−𝑋3

            𝑆43 = 𝑥−𝑋3
𝑋4−𝑋3

           𝑋3 ≤ 𝑥 ≤ 𝑋4                  (31) 

𝑇𝑥4 = 𝑆44𝑇4 + 𝑆54𝑇5           𝑆44 = 𝑋5−𝑥
𝑋5−𝑋4

            𝑆43 = 𝑥−𝑋4
𝑋5−𝑋4

           𝑋4 ≤ 𝑥 ≤ 𝑋5                  (32) 

𝑆21 ≠ 𝑆22, 𝑆32 ≠ 𝑆33 and 𝑆43 ≠ 𝑆44 

The temperature gradient through the an individual element 𝑑𝑇
𝑒

𝑑𝑥
 can be found from the 

derivative of Eqn.33 

𝑇𝑥𝑒 = 𝑇𝑖 �
𝑋𝑗−𝑥
𝐿
�+ 𝑇𝑗 �

𝑥−𝑋𝑖
𝐿
�                                 (33) 

𝑇𝑥𝑒 = 𝑋𝑗𝑇𝑖
𝐿
− 𝑥𝑇𝑖

𝐿
+ 𝑥𝑇𝑗

𝐿
+ 𝑋𝑖𝑇𝑗

𝐿
                                 (34) 

𝑇𝑥𝑒 = 𝑥𝑇𝑗
𝐿
− 𝑥𝑇𝑖

𝐿
+ 𝑋𝑗𝑇𝑖

𝐿
− 𝑋𝑖𝑇𝑗

𝐿
                                             (35) 

𝑇𝑥𝑒 = 𝑥
𝐿
�𝑇𝑗 − 𝑇𝑖� + 1

𝐿
�𝑋𝑗𝑇𝑖 − 𝑋𝑖𝑇𝑗�                                                          (36) 

 
Node 

Element # i j 
1 1 2 
2 2 3 
3 3 4 
4 4 5 
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such that 

𝑑𝑇𝑥𝑒

𝑑𝑥
= 𝑇𝑗−𝑇𝑖

𝐿
                          (37) 

We can check that our shape functions are correct by knowing that the shape function 
derivatives sum to zero. 

1-Dimensional Quadratic Elements 

A one-dimensional quadratic element is shown in Fig.4. We can deduce immediately that 
the element order is greater than one because the interpolation between the nodes in non-
linear. We can determine from inspection that the element is quadratic (second order) 
because there’s a ‘midside’ node. We know therefore that the function approximating the 
solution is a second order polynomial: 

𝑇𝑥𝑒 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2                        (38) 

 

The shape functions 𝑆𝑖 can be determined by solving Eqn.38 using known 𝑇𝑖 at known 𝑋𝑖 to 
give: 

𝑇𝑥𝑒 = 𝑆𝑖𝑇𝑖 + 𝑆𝑗𝑇𝑗 + 𝑆𝑘𝑇𝑘𝑗                                (39) 

𝑆𝑖 = 2
𝐿2

(𝑥 − 𝑋𝑘)�𝑥 − 𝑋𝑗�                        (40) 

𝑆𝑗 = −4
𝐿2

(𝑥 − 𝑋𝑖)(𝑥 − 𝑋𝑘)                        (41) 

𝑆𝑘 = 2
𝐿2

(𝑥 − 𝑋𝑖)�𝑥 − 𝑋𝑗�                         (42) 

x 
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Using the quadratic shape functions for a single element (Eqns.40-42), we can assemble a 
corresponding set of equations for a larger system: 

 

                            

 

   

𝑇𝑥1 = 𝑆𝑖1𝑇𝑖 + 𝑆𝑗1𝑇𝑗 + 𝑆𝑘1𝑇𝑘                               (43) 

𝑆𝑖1 = 2
𝐿2

(𝑥 − 𝑋𝑘)�𝑥 − 𝑋𝑗�                         

𝑆𝑗1 = −4
𝐿2

(𝑥 − 𝑋𝑖)(𝑥 − 𝑋𝑘)                         

𝑆𝑘1 = 2
𝐿2

(𝑥 − 𝑋𝑖)�𝑥 − 𝑋𝑗�                          

𝑇𝑥2 = 𝑆𝑘2𝑇𝑘 + 𝑆𝑚2 𝑇𝑚 + 𝑆𝑛2𝑇𝑛                                           (44) 

𝑆𝑘2 = 2
𝐿2

(𝑥 − 𝑋𝑛)(𝑥 − 𝑋𝑚)                         

𝑆𝑚2 = −4
𝐿2

(𝑥 − 𝑋𝑘)(𝑥 − 𝑋𝑛)                         

𝑆𝑛2 = 2
𝐿2

(𝑥 − 𝑋𝑘)(𝑥 − 𝑋𝑚)       

 
Nodes 

Element #  i j k 
1 i j k 

    
 

Nodes 
Element #  i j k 

2 k m n 

𝑇𝑥1 = �𝑆𝑖1 𝑆𝑘1 𝑆𝑗1� �
𝑇𝑖
𝑇𝑘
𝑇𝑗
� 

𝑇𝑥2 = [𝑆𝑘2 𝑆𝑚2 𝑆𝑛2] �
𝑇𝑘
𝑇𝑚
𝑇𝑛
� 
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The element shape functions are stored within the element in commercial FE codes. The 
positions 𝑋𝑖 are generated (and stored) when the mesh is created. Once the nodal degrees 
of freedom are known, the solution at any point between the nodes can be calculated using 
the (stored) element shape functions and the (known) nodal positions. The nodal degrees of 
freedom are calculated using a method such as that shown previously in lecture 1. 

For the cases presented above, simple 1-dimensional elements were most appropriate, but 
for many practical applications we may encounter more complex 2- and 3-dimensional 
geometry. A suitable set of element types are shown in Fig.4 encompassing a range of 
geometry and element order. A meshed geometry is shown in Fig.5. 

 

Figure 4: Example element types 

 

Figure 5: An exhaust manifold discretised (meshed) using 3-dimensional, quadratic brick 
elements, enabling the geometrical curvature to be captured 
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Coordinate Systems 

Solution fields (such as displacement fields in solid mechanics) often require integrals of the 
following kind to be evaluated: 

∫ 𝑆𝑖(𝑥)𝑆𝑗(𝑥)𝑑𝑥𝑋𝑗
𝑋𝑖

  or  ∫ 𝑆𝑖2(𝑥)𝑑𝑥𝑋𝑗
𝑋𝑖

                       (45) 

Note that the superscript in Eqn.45 denotes a power now (and not an element label). These 
integrals can be simplified to make the integration procedures more efficient by deriving 
new shape functions defined relative to a local (element level) coordinate system. 

For instance, we have so far derived our one-dimensional linear shape functions using a 
global coordinate system with its origin at O – Fig.6. These shape functions were: 

𝑆𝑖(𝑥) =  �𝑋𝑗−𝑥
𝐿
�                        (46) 

𝑆𝑗(𝑥) =  �𝑥−𝑋𝑖
𝐿
�                      (47)  

 

Figure 6: Representation of a single linear element in global, local and natural frames of 
reference 

We wish now to derive the shape functions in the local coordinate reference frame with the 
origin at 𝑋𝑖 - shown also in Fig.6. In the new reference frame the position along the element 
given previously by 𝑥 is now given by 𝑋𝑖 + 𝑠. We can rewrite the shape functions in Eqns.46 
and 47 using the new reference frame by substitution such that: 

x 

s 
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𝑆𝑖(𝑠) =  𝑋𝑗−
(𝑋𝑖+𝑠)

𝐿
= 1 − 𝑠

𝐿
                                   (48) 

𝑆𝑗(𝑠) =  (𝑋𝑖+𝑠)−𝑋𝑖
𝐿

= 𝑠
𝐿
                                   (49) 

and  

∫ 𝑆𝑖(𝑥)𝑆𝑗(𝑥)𝑑𝑥𝑋𝑗
𝑋𝑖

  or  ∫ 𝑆𝑖2(𝑥)𝑑𝑥𝑋𝑗
𝑋𝑖

                       (50) 

becomes 

∫ 𝑆𝑖(𝑠)𝑆𝑗(𝑠)𝑑𝑠𝐿
0   or  ∫ 𝑆𝑖2(𝑠)𝑑𝑠𝐿

0                        (51) 

where the limits of integration are easier to deal with. However, they can be simplified 
further by using a non-dimensional natural coordinate system. A natural coordinate system 
is shown in Fig.6. A coordinate at the centre of the element is specified. From this reference 
frame, the shape functions are: 

𝑆𝑖(𝜉) = 1
2

(1 − 𝜉)                         (52) 

𝑆𝑗(𝜉) = 1
2

(1 + 𝜉)                         (53) 

To find these, we substitute 𝑥 in Eqns.46 and 47 with 𝑥 = 𝑋𝑖 + 𝐿
2

+ 𝜉 and note that 𝐿 = 2 

𝑆𝑖(𝜉) = 𝑋𝑗−𝑥
𝐿

=
𝑋𝑗−�𝑋𝑖+

𝐿
2+𝜉�

𝐿
= 𝑋𝑗

𝐿
− 𝑋𝑖

𝐿
− 𝐿

2𝐿
− 𝜉

𝐿
= 1

2
− 𝜉

2
= 1

2
(1 − 𝜉)                   (54) 

𝑆𝑗(𝜉) = 𝑥−𝑋𝑖
𝐿

=
�𝑋𝑖+

𝐿
2+𝜉�−𝑋𝑖
𝐿

= 𝑋𝑖
𝐿

+ 𝐿
2𝐿

+ 𝜉
𝐿
− 𝑋𝑖

𝐿
= 1

2
+ 𝜉

2
= 1

2
(1 + 𝜉)                   (55) 

Recall that the shape functions are equal to one at their respective nodes and 0 at the other 
nodes – i.e: 

 𝑆𝑖(−1) = 1
2

(1 − 𝜉) = 1 

𝑆𝑖(1) =
1
2

(1 − 𝜉) = 0 

𝑆𝑗(−1) =
1
2

(1 − 𝜉) = 1 

𝑆𝑗(1) =
1
2

(1 − 𝜉) = 0 

The integrals become: 

∫ 𝑆𝑖(𝜉)𝑆𝑗(𝜉)𝑑𝜉1
−1   or  ∫ 𝑆𝑖2(𝜉)𝑑𝜉1

−1                        (56) 
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where the limits of integration are -1 and +1. Integrals of this type can be solved very 
efficiently using, for instance, the Gauss-Legendre method. 

 


	Lecture 2 Cover
	Lecture 2

